Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)( có 200 số )
Ta có
\(\frac{1}{101}>\frac{1}{300}\); \(\frac{1}{102}>\frac{1}{300}\); ...;\(\frac{1}{299}>\frac{1}{300}\)
=> \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)> \(\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}+\frac{1}{300}\)
=> \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)> \(\frac{1}{300}.200\)
=> \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)> \(\frac{2}{3}\)( dpcm )
Ta có\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}>200.\frac{1}{300}=\frac{200}{300}=\frac{2}{3}\Rightarrowđpcm\)
Đặt \(S=\frac{1}{3}+\frac{2}{3^2}+.......+\frac{101}{3^{101}}\)
\(\Rightarrow3S=1+\frac{2}{3}+.......+\frac{101}{3^{100}}\)
\(\Rightarrow3S-S=\left(1+\frac{2}{3}+..+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+..+\frac{101}{3^{101}}\right)\)
\(\Rightarrow2S=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{100}}-\frac{101}{3^{101}}< 1+\frac{1}{3}+....+\frac{1}{3^{100}}\)
\(\Rightarrow6S< 3+1+........+\frac{1}{3^{99}}\)
\(\Rightarrow6S-2S< \left(3+1+....+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3}+....+\frac{1}{3^{100}}\right)\)
\(\Rightarrow4S< 3-\frac{1}{3^{100}}< 3\Rightarrow S< \frac{3}{4}\)
Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+...+\frac{101}{3^{101}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\)
\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\right)\)
\(4A=3-\frac{101}{3^{100}}-\frac{1}{3^{100}}+\frac{101}{3^{101}}\)
\(4A=3-\frac{303}{3^{101}}-\frac{3}{3^{101}}+\frac{100}{3^{101}}\)
\(4A=3-\frac{206}{3^{101}}< 3\)
=>\(4A< 3\)
\(\Rightarrow A< \frac{3}{4}\)
\(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2000}>\frac{1}{2000}+\frac{1}{2000}+...+\frac{1}{2000}=\frac{1001}{2000}>\frac{1000}{2000}=\frac{1}{2}\)
Đặt \(S=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{199\cdot200}\)
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{199}-\frac{1}{200}\)
\(S=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(S=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Ta có đpcm
Ta có thể thấy: \(\frac{1}{2000}\) là số hạng nhỏ nhất của dãy.
Xét các mẫu, ta tính được số các số hạng của dãy là:
\(\frac{2000-100}{1}+1=1901\)(số)
\(\Rightarrow\frac{1}{100}+\frac{1}{101}+...+\frac{1}{2000}>\frac{1}{2000}+\frac{1}{2000}+...+\frac{1}{2000}\)
( 1901 số \(\frac{1}{2000}\))
\(\Rightarrow\frac{1}{100}+\frac{1}{101}+...+\frac{1}{2000}>\frac{1901}{2000}>\frac{1000}{2000}=\frac{1}{2}\)
Vậy \(\frac{1}{100}+\frac{1}{101}+...+\frac{1}{2000}>\frac{1}{2}\)