Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10^{2003}+125=10...000+125=10...125\left(\text{2000 chữ số 0}\right)\)chia hết cho 5 (1)
Mà 10...125 có tổng các chữ số là: 1+0+0+...+1+2+5 (2000 số 0) = 9 nên chia hết cho 9 (2)
và ƯCLN(5; 9)=1 (3)
Từ (1); (2) và (3) => 102003+125 chia hết cho 5.9 hay 102003+125 chia hết cho 45 (đpcm).
Ta có : 102003 + 125 chia hết cho 5 ( bạn tự làm được)
102003 + 125 chia hết cho 9 ( bạn tìm tổng các chữ số )
Do (5;9)=1 mà 102003 + 125 chia hết cho 9 và 5
=> 102003 + 125 chia hết cho 9.5=45
Vậy ...
Ta có: \(45=5.9\Rightarrowđể10^{2008}+125\) thì
\(\left(10^{2008}+125\right)⋮5;9\)
Vì \(125⋮5\) bởi có tận cùng là 5
Mà \(10^{2008}\) luôn có tận cùng là 0 nên chia hết cho 5.
\(\Rightarrow\left(10^{2008}+125\right)⋮5\) (1)
Và \(\left(125+1\right)⋮9\) mà \(10^{2008}:9\) dư 1
\(\Rightarrow\left(10^{2008}+125\right)⋮9\) (2)
Từ (1) và (2) suy ra \(\left(10^{2008}+125\right)⋮5;9\Rightarrow\left(10^{2008}+125\right)⋮45\)
vì chia hết cho 45 suy ra chia hết cho 9và 5
mà 10 mũ 2003+125=1000000000.....(2003 chữ số 0)+125=100000000..125(2000 số 0) có tổng các chữ số chia hết cho 9 và có tận cùng là 5 chia hết 5
vì 543.799.11 có tận cùng là 7 và 58 có tận cùng là 8 nên sẽ có tận cùng là 5 chia hết cho 5
ta có : 10\(⋮\)5 \(\Rightarrow\)10\(^{2003}\)\(⋮\)5 mà 125\(⋮\)5 \(\Rightarrow\)10\(^{2003}\)+ 125\(⋮\)5
ta lại có 10\(^{2003}\)= 1000...0000 có tổng các chữ số bằng 1
\(\Rightarrow\)10\(^{2003}\)+ 125 có tổng các chữ số bằng 1 + 2 + 1 + 5 = 9 nên :
10\(^{2003}\)\(⋮\)9 mà ( 5 ; 9 ) = 1
\(\Rightarrow\)10\(^{2003}\)+ 125 \(⋮\)45
+) câu này mk sữa đề chút nha (nếu là \(10^9+10^8+10^7\) thì không chứng minh đc)
ta có : \(A=10^9+10^8+10^7+...+10+1\)
\(=\left(10^9+10^8\right)+\left(10^7+10^6\right)+...+\left(10+1\right)\)
\(=10^8\left(10+1\right)+10^6\left(10+1\right)+...+\left(10+1\right)\)
\(=11\left(10^8+10^6+...+1\right)⋮11\)
\(\Rightarrow\) \(A\) chia hết cho \(11\) (đpcm)
+) ta có \(10^6-5^7=2^6.5^6-5^7=5^6\left(2^6-5\right)=5^6.59⋮59\)
\(\Rightarrow\left(đpcm\right)\)
+) ta có : \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}=3^{24}\left(3^4-3^3-3^2\right)=3^{24}.45⋮45\)
\(\Rightarrow\left(đpcm\right)\)
vì 102008 có tổng các chữ số bằng 1 mà 125 có tổng các chữ số =8 nên khi ta thêm 1 sẽ được 9 \(⋮\)9
mà 125 đã có tận cùng là 5 nên125\(⋮\)5
\(\Rightarrow\)A\(⋮\)45
Dễ thấy 102008 \(⋮\) 5 và 45 \(⋮\) 5 nên A = 102008 + 45 \(⋮\) 5 (1).
Ta có: A = 100...0 (2008 chữ số 0) + 125.
Tổng các chữ số của tổng A là: 1 + 0 + 0 + ... + 0 + 1 + 2 + 5 = 9 \(⋮\) 9 nên A \(⋮\) 9 (2).
Từ (1) và (2) \(\Rightarrow A⋮\) 5 và 9 \(\Rightarrow A⋮BCNN\left(5;9\right)=45\left(đpcm\right)\)