Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ A = 10^2003 + 125 = (10^2003 -10) + 135 Vì 135 chia hết cho 45 nên chỉ cần chứng minh B = 10^2003 - 10 chia hết cho 45
Ta có B = 10^2003 -10 =10.(10^2002 - 1) = 10.(10^1001 -1).(10^1001 + 1) = 999...90.(10^1001 + 1) chia hết cho 45 (đpcm)
Chú ý : 10^1001 - 1 = 999...9 Là số có 1001 chữ số 9
Bạn thấy thế nào với lời giải của mình?
b/ C = 543.799.111 + 58 = (60.9 + 3).(88.9 + 7).(11.9 + 2) + 58 = (9.k + 21).(11.9 + 2) + 58 = 9.m + 42 + 58 = 9.m + 90 chia hết cho 9 . Vậy C là hợp số
Ở trên mình làm vắn tắt, bạn nhân đa thức cụ thể ra nhé
\(10^{2003}+125=10...000+125=10...125\left(\text{2000 chữ số 0}\right)\)chia hết cho 5 (1)
Mà 10...125 có tổng các chữ số là: 1+0+0+...+1+2+5 (2000 số 0) = 9 nên chia hết cho 9 (2)
và ƯCLN(5; 9)=1 (3)
Từ (1); (2) và (3) => 102003+125 chia hết cho 5.9 hay 102003+125 chia hết cho 45 (đpcm).
Ta có : 102003 + 125 chia hết cho 5 ( bạn tự làm được)
102003 + 125 chia hết cho 9 ( bạn tìm tổng các chữ số )
Do (5;9)=1 mà 102003 + 125 chia hết cho 9 và 5
=> 102003 + 125 chia hết cho 9.5=45
Vậy ...
vì chia hết cho 45 suy ra chia hết cho 9và 5
mà 10 mũ 2003+125=1000000000.....(2003 chữ số 0)+125=100000000..125(2000 số 0) có tổng các chữ số chia hết cho 9 và có tận cùng là 5 chia hết 5
vì 543.799.11 có tận cùng là 7 và 58 có tận cùng là 8 nên sẽ có tận cùng là 5 chia hết cho 5
ta có : 10\(⋮\)5 \(\Rightarrow\)10\(^{2003}\)\(⋮\)5 mà 125\(⋮\)5 \(\Rightarrow\)10\(^{2003}\)+ 125\(⋮\)5
ta lại có 10\(^{2003}\)= 1000...0000 có tổng các chữ số bằng 1
\(\Rightarrow\)10\(^{2003}\)+ 125 có tổng các chữ số bằng 1 + 2 + 1 + 5 = 9 nên :
10\(^{2003}\)\(⋮\)9 mà ( 5 ; 9 ) = 1
\(\Rightarrow\)10\(^{2003}\)+ 125 \(⋮\)45
k 2 k kieu gi
a+4b chia het cho 13
=>a+4b=13k (k nguyen)
a=13k-4b
10.a=130k-40b
10.a+b=130k-39b=13(10k-3b) chia het cho 13
5n+1 chia het cho 7=> 5n+1=7k
n=7z+4
Ta có: 10^2017+8:18=>1062017+8 :2 và 9
Ta có:10^2017:2
8:2
=>10^2017+8 :2
Ta có: 10^2017+8=10000000.............000000(2017 chữ số 0)+8:9
=>10^2017+8 :18
Ta có: 102017+8 = 10....0 (2017 c/s 0) + 8 = 100....08 (2016 c/s 0)
Vì 10....08 có chữ số tận cùng là 8 => 100....08 chia hết cho 2 hay 102017+8 chia hết cho 2 (1)
Vì 1+0+0+...+0+8 = 9 chia hết cho 9 nên 102017 chia hết cho 9 (2)
Mà (2,9) = 1 (3)
Từ (1),(2),(3) => 102017 + 8 chia hết cho 18
vì 102008 có tổng các chữ số bằng 1 mà 125 có tổng các chữ số =8 nên khi ta thêm 1 sẽ được 9 \(⋮\)9
mà 125 đã có tận cùng là 5 nên125\(⋮\)5
\(\Rightarrow\)A\(⋮\)45
Dễ thấy 102008 \(⋮\) 5 và 45 \(⋮\) 5 nên A = 102008 + 45 \(⋮\) 5 (1).
Ta có: A = 100...0 (2008 chữ số 0) + 125.
Tổng các chữ số của tổng A là: 1 + 0 + 0 + ... + 0 + 1 + 2 + 5 = 9 \(⋮\) 9 nên A \(⋮\) 9 (2).
Từ (1) và (2) \(\Rightarrow A⋮\) 5 và 9 \(\Rightarrow A⋮BCNN\left(5;9\right)=45\left(đpcm\right)\)
làm thế này nha bn
a) ab + ba = 10a + b + 10b + b = 11a + 11b = 11(a+b) chia hết 11
b) ab - ba = 10a + b - (10b - a) = 10a + b - 10b - a = 9a - 9b = 9(a-b) chia hết 9
c) abba = 1000a + 100b + 10b + a = 1001a + 110b = 11(91a+10b) chia hết 11
mik nha bn
ab + ba = 10a + b + 10b + a = 11a + 11b = 11(a + b) chia hết cho 11
ab - ba = (10a + b) - (10b + a) = 10a + b - 10b - a = 9a + 9b = 9(a + b) chia hết cho 9
abba = 1001a + 110b = 11 . 91a + 11 . 10b = 11(91a + 10b) chia hết cho 11
T nhé
b.
72a+63b+21c
ta xét
72a = 3.24.a chia hết cho 3
63b=3.21.b chia hết cho 3
21c=3.7.c chia hết cho 3
=>72a+63b+21c chia hết cho 3 vì các số hạng đều chia hết cho 3
=>dpcm