Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)
\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)
\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)
Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)
Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)
\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)
\(\dfrac{1}{7^2}< \dfrac{1}{6.7}\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
A<\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
A<\(\left[\left(\dfrac{1}{1}-\dfrac{1}{8}\right)+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5}\right)+\left(-\dfrac{1}{6}+\dfrac{1}{6}\right)+\left(-\dfrac{1}{7}+\dfrac{1}{7}\right)+\left(-\dfrac{1}{8}+\dfrac{1}{8}\right)\right]\)A<\(\left[\left(\dfrac{8}{8}-\dfrac{1}{8}\right)+0+0+0+0+0+0+0\right]\)
A<\(\dfrac{7}{8}< 1\)
Vậy ta có đpcm.
Sorry nha, chỗ phân tích ra thành tống đại số phải như này :
A<\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
Rồi làm tương tự.
Mình cho bạn công thức nè :\(\dfrac{1}{n\left(n+1\right)}< \dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)
Ta có:
1/2^2<1/1.2
1/3^2<1/2.3
...
1/1007^2<1/1006.1007
=>1/2^2+1/3^2+...+1/1007^2<1/1.2+1/2.3+...+1/1006.1007
=>1/2^2+1/3^2+...+1/1007^2<1-1/2+1/2-1/3+...+1/1006-1/1007
=>1/2^2+1/3^2+...+1/1007^2<1-1/1007<1
=>1/2^2+1/3^2+...+1/1007^2<1
=> (1/42 + 1/62 + 1/82 + ... + 1/20142).4<1/4.4
1/42 + 1/62 + 1/82 + ... + 1/20142 <1/4