Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+5b-\left(3a+b\right)\ge3ab-5\)
\(\Leftrightarrow2a^2+10b^2-6a-2b-6ab+10\ge0\)
\(\Leftrightarrow\left(a^2-6ab+9b^2\right)+\left(a^2-6a+9\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-3b\right)^2+\left(a-3\right)^2+\left(b-1\right)^2\ge0\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}a-3b=0\\a-3=0\\b-1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=3\\b=1\end{cases}}\)
Dễ thế này cũng hỏi nổi, LẠY @@
1a)\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
b)\(\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)
2a)\(a^2+\dfrac{b^2}{4}\ge ab\)
\(\Leftrightarrow a^2-ab+\dfrac{b^2}{4}\ge0\)
\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}b\cdot a+\left(\dfrac{1}{2}b\right)^2\ge0\)
\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)
b)Đã cm
c)\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)
Dấu bằng xảy ra khi a=b=1
1.
a) ( a+1)(a+2)(a^2+4)(a-1)(a^2+1)(a-2)
= [(a+1)(a-1)][(a-2)(a+2)](a^2+1)(a^2+4)
=[(a^2+1)(a^2-1)][(a^2+4)(a^2-4)]
=(a^4-1)(a^4-16)
b)(3a+1)^2 + (2-3a)(2+3a)
= 9a2 + 6a +1 + 4 - 9a2
= 6a+5
2.
Ta có a3 +b3 = ( a + b)(a2 -ab + b2) = a2 + 2ab +b2 -3ab = (a+b)2 -3ab = 1-3ab ( dpcm)
1.
a) (a + 1)(a + 2)(a2 + 4)(a - 1)(a2 + 1)(a - 2)
= [(a + 1)(a - 1)][(a + 2)(a - 2)](a2 + 4)(a2 + 1)
= (a2 - 1)(a2 - 4)(a2 + 4)(a2 + 1)
= [(a2 - 1)(a2 + 1)][(a2 - 4)(a2 + 4)]
= (a4 - 1)(a4 - 16)
= a8 - 16a4 - a4 + 16
= a8 - 17a4 + 16
b) (3a + 1)2 + (2 - 3a)(2 + 3a)
= 9a2 + 6a + 1 + 22 - 9a2
= (9a2 - 9a2) + 6a + (1 + 4)
= 6a + 5
2.
a + b = 1
(a + b)3 = 13
a3 + 3a2b + 3ab2 + b3 = 1
a3 + b3 + 3ab(a + b) = 1
a3 + b3 = 1 - 3ab(a + b)
Mà a + b = 1
=> a3 + b3 = 1 - 3ab
Vậy với a + b = 1 thì a3 + b3 = 1 - 3ab
Ta có : \(\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)
\(=\left(5a-3b\right)^2-\left(8c\right)^2\)
\(=\left(5a-3b\right)^2-64c^2\)
\(=\left(5a-3b\right)^2-16.4c^2\)
\(=\left(5a-3b\right)^2-16\left(a^2-b^2\right)\)
\(=25a^2-30ab+9b^2-16a^2+16b^2\)
\(=9a^2-30ab+25b^2\)
\(=\left(3a-5b\right)^2\left(đpcm\right)\)
biến đổi vế trái
\(\Leftrightarrow\left(5a-3b\right)^2-\left(8c\right)^2\)
\(\Leftrightarrow25a^2-30ab+9b^2-64c^2\)
\(\Leftrightarrow25a^2-30ab+9b^2-16\left(a^2-b^2\right)\)
\(\Leftrightarrow\left(25a^2-16a^2\right)-30ab+\left(9b^2+16b^2\right)\)
\(\Leftrightarrow9a^2-30ab+25b^2\)
\(\Leftrightarrow\left(3a-5b\right)^2\) (điều cần c/m)
( 5a - 3b + 8c )( 5a - 3b - 8c )
= [ ( 5a - 3b ) + 8c ][ ( 5a - 3b ) - 8c ]
= ( 5a - 3b )2 - ( 8c )2
= 25a2 - 30ab + 9b2 - 64c2
= 25a2 - 30ab + 9b2 - 16.4c2
= 25a2 - 30ab + 9b2 - 16( a2 - b2 ) < vì a2 - b2 = 4c2 >
= 25a2 - 30ab + 9b2 - 16a2 + 16b2
= 9a2 - 30ab + 25b2
= ( 3a - 5b )2
=> đpcm
\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)
\(VT=\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)
\(=\left(5a-3b\right)^2-\left(8c\right)^2\)
\(=25a^2-30ab+9b^2-64c^2\)
\(=25a^2-30ab+9b^2-16.4c^2\)
\(=25a^2-30ab+9b^2-16.\left(a^2-b^2\right)\)
\(=25a^2-30ab+9b^2-16a^2+16b^2\)
\(=9a^2-30ab+25b^2\)
\(=\left(3a-5b\right)^2\left(đpcm\right)\)
Links:
Chứng minh $a^2+5b^2-(3a+b)\geq 3ab-5$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
Chứng minh a^2 + 5b^2 - (3a + b) ≥ 3ab - 5 - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục