K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2020

\(F=\frac{3}{2}\cdot x^4-\frac{1}{16}\cdot x^4+\frac{1}{32}\cdot x^4-\frac{1}{4}\cdot x^4\)

\(=x^4\left(\frac{3}{2}-\frac{1}{16}+\frac{1}{32}-\frac{1}{4}\right)\)

\(=\frac{32}{39}\cdot x^4\)

Vì \(x\ne0\Rightarrow x^4>0\)

=> \(\frac{32}{39}x^4>0\forall x\ne0\)

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
19 tháng 4 2020

\(F=\frac{3}{2}x^4-\frac{1}{16}x^4+\frac{1}{32}x^4-\frac{1}{4}x^4\)

\(F=\left(\frac{3}{2}-\frac{1}{16}+\frac{1}{32}-\frac{1}{4}\right)x^4\)

\(F=\frac{39}{32}x^4\)

Ta có : x4 có số mũ là 4 => x4 luôn dương với mọi x ( x khác 0 )

\(\frac{39}{32}>1\Rightarrow\frac{39}{32}>0\)

=> \(\frac{39}{32}x^4\)luôn dương với mọi x ( x khác 0 )

=> \(\frac{39}{32}x^4>0\)với mọi x ( x khác 0 )

=> \(F=\frac{3}{2}x^4-\frac{1}{16}x^4+\frac{1}{32}x^4-\frac{1}{4}x^4>0\forall x\left(x\ne0\right)\)

9 tháng 3 2017

Ta có:

A = (x + 1)(y + 1)

=> A = xy + x + y +1

=> A = 1 + x + y + 1

=> A = 2 + x + y

Vì x > 0 ; y > 0

=>x \(\ge\)1; y\(\ge\)1

=> x + y \(\ge\)2

=> 2 + x + y \(\ge\)4

hay A \(\ge\)4

4 tháng 8 2019

1)

a) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)

=> \(x-2\)\(x+\frac{2}{3}\) cùng dấu.

Ta có 2 trường hợp:

TH1:

\(\left\{{}\begin{matrix}x-2>0\\x+\frac{2}{3}>0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x>2\\x>-\frac{2}{3}\end{matrix}\right.\) => \(x>2\left(TM\right).\)

TH2:

\(\left\{{}\begin{matrix}x-2< 0\\x+\frac{2}{3}< 0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x< 2\\x< -\frac{2}{3}\end{matrix}\right.\) => \(x< -\frac{2}{3}\left(TM\right).\)

Vậy \(x>2\)\(x< -\frac{2}{3}.\)

Mình chỉ làm được thế thôi nhé bạn.

Chúc bạn học tốt!

4 tháng 8 2019

1.b)

Ta có \(VT=\left(x-2,5\right)^{20}+\left(y+3,2\right)^{10}\ge0\forall x,y\)

Nên để xảy ra đẳng thức tức là để tìm được x thỏa mãn đề bài thì:

\(\left\{{}\begin{matrix}\left(x-2,5\right)^{20}=0\\\left(y+3,2\right)^{10}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2,5\\y=-3,2\end{matrix}\right.\)

Vậy...

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)