Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng A có 1000 số hạng.
�>100110002+1000.1000=1001.10001000(1000+1)=1A>10002+10001001.1000=1000(1000+1)1001.1000=1
�<100110002.1000=10011000=1+11000<2A<100021001.1000=10001001=1+10001<2
Vậy 1<�<2⇒12<�2<22⇒1<�2<41<A<2⇒12<A2<22⇒1<A2<4
Chúc bạn học tốt.
Tổng A có 1000 số hạng
A>(1001/1000^2+1000)*1000=1001*1000/1000*(1000+1)=1
A<(1001/1000^2)*1000=1001/1000=1+1/1000<1
Vậy 1<A<2 nên 1<A^2<4
Xem bài tại link này nhé! Bài làm đúng đã đc OLM chọn.
Câu hỏi của Cristiano Ronaldo - Toán lớp 7 - Học toán với OnlineMath
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....-\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+......+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2001}+\frac{1}{2002}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{2002}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{1001}\right)\)
\(=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+.....+\frac{1}{2002}\)
Chúc em học tốt nhé!
Tổng A có 1000 số hạng.
\(A>\frac{1001}{1000^2+1000}.1000=\frac{1001.1000}{1000\left(1000+1\right)}=1\)
\(A< \frac{1001}{1000^2}.1000=\frac{1001}{1000}=1+\frac{1}{1000}< 2\)
Vậy \(1< A< 2\Rightarrow1^2< A^2< 2^2\Rightarrow1< A^2< 4\)
Chúc bạn học tốt.