K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2023

Tổng A có 1000 số hạng.

�>100110002+1000.1000=1001.10001000(1000+1)=1

�<100110002.1000=10011000=1+11000<2

Vậy 1<�<2⇒12<�2<22⇒1<�2<4

Chúc bạn học tốt.

16 tháng 9 2023

Tổng A có 1000 số hạng

A>(1001/1000^2+1000)*1000=1001*1000/1000*(1000+1)=1

A<(1001/1000^2)*1000=1001/1000=1+1/1000<1

Vậy 1<A<2 nên 1<A^2<4

26 tháng 7 2019

Hình như là c/minh 1 < A2 < 4 mà

28 tháng 10 2019

Xem bài tại link này nhé!  Bài làm đúng đã đc OLM chọn.

Câu hỏi của Cristiano Ronaldo - Toán lớp 7 - Học toán với OnlineMath

28 tháng 10 2019

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....-\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+......+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2001}+\frac{1}{2002}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{2002}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{1001}\right)\)

\(=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+.....+\frac{1}{2002}\)

Chúc em học tốt nhé!

9 tháng 10 2018

Tổng A có 1000 số hạng.

\(A>\frac{1001}{1000^2+1000}.1000=\frac{1001.1000}{1000\left(1000+1\right)}=1\)

\(A< \frac{1001}{1000^2}.1000=\frac{1001}{1000}=1+\frac{1}{1000}< 2\)

Vậy \(1< A< 2\Rightarrow1^2< A^2< 2^2\Rightarrow1< A^2< 4\)

Chúc bạn học tốt.