Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+c\right)\left(b-d\right)=\left(a-c\right)\left(b+d\right)\)
\(\Leftrightarrow ab-ad+bc-cd=ab+ad-bc-cd\)
\(\Leftrightarrow-ad+bc=ad-bc\)
\(\Leftrightarrow2bc=2ad\)
\(\Leftrightarrow bc=ad\)
\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\) (đpcm)
Để mik làm cho nha
Ta có: a+b=c+d => a= c+d-b
cd-ab=1
cd-(c+d-b)b=1
cd-cb-db+b^2=1
d(c-b)-b(c-b)=1
(d-b)(c-b)=1
Do a,b,c,d là các số nguyên nên ta có:
Th1 :d-b=1 và c-b=1 suy ra c=d
Th2: d-b=-1 và c-b=-1 suy ra c=d
Vậy c=d trong cả hai trường hợp.
\(a+b=c+d\Rightarrow a=c+d-b\)
Thay vào: \(ab+1=cd\)
\(\Rightarrow\left(c+d-b\right).b+1=cd\)
\(\Leftrightarrow cb+db-cd+1-b^2=0\)
\(\Leftrightarrow b\left(c-d\right)-d\left(c-d\right)+1=0\)
\(\Leftrightarrow\left(b-d\right)\left(c-d\right)=-1\)
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
Mà (b-d)(c-b)=-1 nên có 2 TH:
\(TH1:\hept{\begin{cases}b-d=1;c-d=1\\d=b+1;c=b+1\end{cases}}\)
\(\Rightarrow c=b\)
\(TH2:\hept{\begin{cases}b-d=1;c-d=-1\\d=b-1;c=b-1\end{cases}}\)
\(\Rightarrow c=d\)
Vậy: Từ 2 TH, ta có: c = d.
Có \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a-b}{b}=\frac{a}{b}-\frac{b}{b}=\frac{a}{b}-1\)( 1 )
\(\frac{c-d}{d}=\frac{c}{d}-\frac{d}{d}=\frac{c}{d}-1\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)( đpcm )
a-b/b=a/b-b/b=a/b-1=c/d-1(1)
c-d/d=c/d-d/d=c/d-1(2)
(1)(2)\(\Rightarrow\)đpcm
+)Vì x<y
Suy ra a/b<c/d
Suy ra a.b+a.d<b.c+b.a
Suy ra a.(b+d)<b.(c+a)
Suy ra a/b<c+a/b+d
Suy ra a/b<c+a/b+d<c/d
Suy ra x<z<y