K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

(x+y)^3=x^3+y^3+3xy(x+y)

suy ra đpcm

15 tháng 3 2018

1 thằng ngu đăng bài :)

\(x^3+y^3=x^3+3xy^2+3x^2y+y^3-3xy^2-3x^2y\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3+z^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3\)

9 tháng 8 2016

Ta có \(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]=0\)(Nhân hai vế với 2)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

Tới đây bạn xét hai trường hợp nhé :)

9 tháng 8 2016

(x+y+z)((X+Y)^2-Z(X+Y))-3XY(X+Y+Z)

=(X+Y+Z)(X^2+2XY+Y^2-XZ-YZ-3XY)

=(X+Y+Z)(X^2+Y^2+Z^2-XZ-YZ-XY)

8 tháng 8 2017

1) 2x2-8xy-5x+20y

=2x(x-4y)-5(x-4y)

=(2x-5)(x-4y)

2) x3-x2y-xy+y2

=x2(x-y)-y(x-y)

=(x2-y)(x-y)

3) x2-2xy-4z2+y2

=(x-y)2-(2z)2

=(x-y-2z)(x-y+2z)

4) a3+a2b-a2c-abc

=a2(a+b)-ac(a+b)

=(a2-ac)(a+b)

=a(a-c)(a+b)

5) x3+y3+3x2y+3xy2-x-y

=(x+y)(x2-xy+y2)+3xy(x+y)-(x+y)

=(x+y)(x2-xy+y2+3xy-1)

=(x+y)[(x+y)2-1)]

=(x+y)(x+y+1)(x+y-1)

6) x3+x2y-x2z-xyz

=x2(x+y)-xz(x+y)

=(x2-xz)(x+y)

=x(x-z)(x+y)

7) =[x(y+z)2-2xyz]+[y(z+x)2-2xyz]+z(x+y)2

=x(y2+z2)+y(z2+x2)+z(x+y)2

=xy(x+y)+z2(x+y)+z(x+y)2

=(x+y)(xy+z2+zx+zy)

=(x+y)(x+z)(y+z)

8) x3(z-y)+y3(x-z)+z3(y-x)

Tách x-z= -[z-y+y-x]

23 tháng 9 2015

a/ => (x + 1)(2x2 - 3x + 6) = 0 

=> x + 1 = 0 => x = -1

hoặc 2x2 - 3x + 6 = 0 

Có denta = (-3)2 - 4.2.6 = -39 < 0 

=> pt vô nghiệm 

Vậy x = -1

b/ => x2 + x = 0 => x(x + 1) = 0 

=> x = 0 hoặc x + 1 = 0 => x = -1

Vì x2 + x + 1 > 0 

Vậy x = 0 ; x = -1

c/ tự làm nha ^^

10 tháng 6 2018

a, x^4 - 5x^2 + 4

= x^4 - 4x^2- x+ 4

= x^2  . (x^2 - 4) - (x^2 - 4)

= (x^2 - 4) . (x^2 - 1)

= (x - 2) . (x + 2) . (x - 1) . (x + 1)

\(\left(x+y+z\right)^3-x^3-y^3-z^3\\ =x^3+y^3+z^3-x^3-y^3-z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\\ =3\left(x+y\right)\left(y+z\right)\left(z+x\right)\:\left(đpcm\right)\)

7 tháng 7 2017

\(VT=\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3z\left(x+y\right)^2+3\left(x+y\right)z^2+z^3-x^3-y^3-z^3\)

\(=x^3+3x^2y+3xy^2+y^3+3z+\left(x+y\right)^2+3xz^2+3yz^2-x^3-y^3\)

\(=3x^2y+3xy^2+3z\left(x^2+2xy+y^2\right)+3xz^2+3yz^2\)

\(=3x^2y+3xy^2+3x^2z+6xyz+3y^2z+3xz^2+3yz^2\) (1)

\(VP=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(=\left(3x+3y\right)\left(y+z\right)\left(z+x\right)\)

\(=\left(3xy+3xz+3y^2+3yz\right)\left(z+x\right)\)

\(=3xyz+3x^2y+3xz^2+3x^2z+3y^2z+3xy^2+3yz^2+3xyz\)

\(=6xyz+3x^2y+3xz^2+3x^2z+3y^2z+3xy^2+3yz^2\) (2)

Từ (1) và (2) suy ra \(VT=VP\) (đpcm)

6 tháng 7 2016

\(\left(x+y+z\right)^3=\left[\left(x+y\right)+z\right]^3=\left(x+y\right)^3+z^3+3\left(x+y\right)z\left(x+y+z\right)\)

\(=x^3+y^3+3xy\left(x+y\right)+c^3+3\left(x+y\right)z\left(x+y+z\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(xy+zx+zy+z^2\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\Rightarrow\left(dpcm\right)\)

Chúc bạn học tốt 

T I C K nha cảm ơn bạn

24 tháng 5 2017

lười thế bạn nhân phá ra là được mà

24 tháng 5 2017

a ) \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

Biến đổi vế trái ta được :

\(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)\)

\(=x^2+xy+xz+xy+y^2+yz+zx+zy+z^2\)

\(=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

1, 2x2 - 8xy - 5x + 20y

= (2x2 - 5x) - (8xy - 20y)

= x(2x - 5) - 4y(2x - 5)

= (2x - 5) (x - 4y)

2,  x- x2y - xy + y2

= (x3 - xy) - (x2y - y2)

= x(x2 - y) - y(x2 - y)

= (x2 - y) (x - y)

3, x2 - 2xy - 4z+ y2

= (x2 - 2xy + y2) - 4z2

= (x - y)2 - (2z)2 

= (x - y - 2z) (x - y + 2z)

4, a3 + a2b - a2c - abc

= (a3 - a2c) + (a2b - abc)

= a2(a - c) + ab(a - c)

= (a - c) (a2 + ab)

5, x+ y3 + 3x2y + 3xy- x - y

= (x3 + 3x2y + 3xy2 + y3) - (x + y)

= (x + y) 3 - (x + y)

= (x + y) [(x + y)2 - 1]

= (x + y) (x + y - 1) (x + y + 1)

4 tháng 10 2018

chịu thôi tớ ko biết

28 tháng 9 2016

Bài 1 :

a) xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

b) \(x^3-x+3x^2y+3xy^2+y^3-x-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

28 tháng 9 2016

Đã có kết quả

Bài 1,chữa phần a

 xy(x+y)+yz(y+z)+xz(x+z)+2xyz

=[xy(x+y)+xyz]+[yz(y+z)+xyz]+xz(x+z)

=xy(x+y+z)+yz(x+y+z)+xz(x+z)

=y(x+y+z)(x+z)+xz(x+z)

=(x+z)(xy+y2+yz+xz)

=(x+z)(x+y)(y+z)

Chữa phần b

x3-x+3x2y+3xy2+y3-y

=(x+y)(x+y-1)(x+y+1)

Bài2

a3+b3+c3=(a+b)3-3ab(a+b)+c3=-c3-3ab(-c)+c3=3abc

Ai làm đúng như này ớ sẽ k