Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= x2y+xy2+y2z+yz2+x2z+xz2+2xyz
=(x2y+x2z+xz2+xyz) + ( xy2+y2z+yz2+xyz)
=x(xy+xz+z2+yz)+y(xy+yz+z2+xz)
=(xy+xz+yz+z2).(x+y)
=(x(y+z)+z(y+z)).(x+y)
=((y+z).(x+z)).(x+y)= (x+y)(x+z)(y+z)
2. 3(x-3)(x-7)+(x-4)2+48
=3(x2+4x-21)+x2-8x+16+48
=4x2-4x+1 = (2x-1)2
Thay x=0,5 vào bt trên, ta có : (2.0,5 -1)2=0
3, x2-6x+10
= x2-2.3.x+9+1
=(x-3)2+1 \(\ge\)1 >0 ( do (x-3)2 >=0 với mọi x)
=> x26x+10 >0 với mọi x
4x-x2-5
=-(x2-4x+5)
=- (x2-2.2x+4+1)
= - ((x-2)2+1) = -(x-2)2-1\(\le\)-1 < 0 ( do (x-2)2\(\ge\)0 với mọi x => - (x-2)2\(\le\)0 với mọi x)
vậy, 4x-x2-5<0 với mọi x
Ta có : x2 - 6x + 10
= x2 - 6x + 9 + 1
= (x - 3)2 + 1
Mà (x - 3)2 \(\ge0\forall x\)
Nên : (x - 3)2 + 1 \(\ge1\forall x\)
=> (x - 3)2 + 1 \(>0\)(đpcm)
\(B=x^4-2x^3+2x^2-4x+5\)
\(=\left(x^4-2x^3+x^2\right)+\left(x^2-4x+4\right)+1\)
\(=\left(x^2-x\right)^2+\left(x-2\right)^2+1\)
Vì: \(\begin{cases}\left(x^2-x\right)^2\ge0\\\left(x-2\right)^2\ge0\end{cases}\)\(\Rightarrow\left(x^2-x\right)^2+\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x^2-x\right)^2+\left(x-2\right)^2+1>0\)
Kết luận...............................................
x2+y2+z2+3> hoac = 2(x+y+z)
\(x^2+y^2+z^2+3-2\left(x+y+z\right)\ge0\)
\(\Rightarrow x^2+y^2+z^2+3-2x-2y-2z\ge0\)
\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)(Đpcm)
Dấu = khi (x-1)2=(y-1)2=(z-1)2=0 =>x=y=z=1
Có: \(x^3-y^3=-3xy\left(y-x\right)\)
\(\Leftrightarrow x^3-y^3=-3xy^2+3x^2y\)
\(\Leftrightarrow x^3-3x^2y+3xy^2-y^3=0\)
\(\Leftrightarrow\left(x-y\right)^3=0\)
\(\Leftrightarrow x-y=0\Leftrightarrow x=y\)
Khi đó bt A trở thành:
\(A=\left(2x-y\right)\left(y-2x\right)\left(y-y\right)^2=\left(2x-y\right)\left(y-2x\right)\cdot0=0\)
Ta có x2+y2-4x+2y + 7
= ( x2 -4x+2) + ( y2+2y+1)+4
= ( x-2)2 +( y+1)2 +4
Ta có ( x-2)2 >=0 và ( y+1)2 >=0
<=> ( x-2)2 +( y+1)2 +4>=4
vậy x2+y2-4x+2y + 7>=0
to khong biet