Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2n+3 là số lẻ
và 8n+10 là số chẵn
nên 2n+3 và 8n+10 là hai số nguyên tố cùng nhau
Chị ơi emko hiểu chỗ 2.(2n+3) chia hết cho d => 4n+6 chia hết cho d
Và 6ởđâu ra vạy chị
Gọi d = UCLN(2n+3,4n+8)
Suy ra 2n+3 ⋮ d và 4n+8 ⋮ d
Ta có 2n+3 ⋮ d => 2.(2n+3) ⋮ d => 4n+6 ⋮ d
Vì 4n+8 ⋮ d và 4n+6 ⋮ d nên (4n+8) – (4n+6) ⋮ d => 2 ⋮ d => d ∈ {1;2}
Vì 2n+3 là số lẻ nên d = 2 là không thỏa mãn. Vậy d = 1
Vậy với mọi số tự nhiên n thì 2n+3 và 4n+8 là nguyên tố cùng nhau
Gọi d là ƯCLN(2n+1, 3n+2)
Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d
=> 2(3n+2) - 3(2n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau
cre: h
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Gọi ƯCLN(2n + 3; 2n + 1) = d
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+1⋮d\end{cases}}\)
=> 2n + 3 - (2n + 1) \(⋮\)d
=> 2n + 3 - 2n - 1 \(⋮\)d
=> 2 \(⋮\)d => d ∈ {1;2}
Do 2n + 1 lẻ => d lẻ => d = 1
Vậy ∀ x ∈ N thì 2n + 3 và 2n + 1 là 2 số nguyên tố cùng nhau