\(n\ge2\)thì tổng \(S=\frac{3}{4...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

Bạn tham khảo nhé!Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath

22 tháng 2 2017

Gọi A là vế trái của bất đăng thức trên . ta sử dụng tính chất bắc cầu của bất đẳng thức dưới dạng phương pháp làm trội , để chứng minh A< b , ta làm trội A thành C ( A<C ) rồi chứng minh C>= B ( biểu thức C đóng vai trò là biểu thức trung gian để so sánh A và B)

làm trội mỗi phân số ở A bằng cách làm giảm các mẫu , ta có 

\(\frac{1}{k^3}\)\(\frac{1}{k^3-k}\)\(\frac{1}{k\left(k^2-1\right)}\)\(\frac{1}{\left(k-1\right)k\left(k+1\right)}\)

do đó 

A < \(\frac{1}{2^3-2}\)\(\frac{1}{3^3-3}\)+.....+\(\frac{1}{n^3-n}\)\(\frac{1}{1.2.3}\)\(\frac{1}{2.3.4}\)+ .....+ \(\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

đặt C = \(\frac{1}{1.2.3}\)\(\frac{1}{2.3.4}\)+.....+\(\frac{1}{\left(n-1\right)n\left(n+1\right)}\), nhận xét rằng 

\(\frac{1}{\left(n-1\right)n}\)\(\frac{1}{n\left(n+1\right)}\)\(\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

nên C = \(\frac{1}{2}\)[\(\frac{1}{1.2}\)\(\frac{1}{2.3}\)-......- \(\frac{1}{\left(n-1\right)n}\)-\(\frac{1}{n\left(n+1\right)}\)]

\(\frac{1}{2}\)[\(\frac{1}{2}-\frac{1}{n\left(n+1\right)}\)]

\(\frac{1}{4}\)\(\frac{1}{2n\left(n+1\right)}\)\(\frac{1}{4}\)

vậy ta có điều phải chứng minh

AH
Akai Haruma
Giáo viên
28 tháng 4 2019

Lời giải:

Xét số hạng tổng quát \(\frac{1}{n^3}\)

\((n-1)(n+1)=n^2-1< n^2\)

\(\Rightarrow (n-1)n(n+1)< n^3\)

\(\Rightarrow \frac{1}{(n-1)n(n+1)}>\frac{1}{n^3}\)

Thay $n=2,3,4,.....$. Khi đó ta có:

\(\frac{1}{2^3}+\frac{1}{3^3}+....+\frac{1}{n^3}<\underbrace{ \frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{(n-1)n(n+1)}}_{A}(*)\)

Mà:

\(2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+....+\frac{(n+1)-(n-1)}{(n-1)n(n+1)}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{(n-1)n}-\frac{1}{n(n+1)}\)

\(=\frac{1}{2}-\frac{1}{n(n+1)}< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{4}(**)\)

Từ \((*) ;(**)\Rightarrow \frac{1}{2^3}+\frac{1}{3^3}+....+\frac{1}{n^3}< \frac{1}{4}\)

Ta có đpcm.