Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
x5y-xy5=xy(x4-y4)=xy(x4-1+y4+1)
=xy(x4-1)-xy(y4-1)=xy(x2-1)(x2+1)-xy(y2-1)(y2+1)
=xy(x-1)(x+1)(x2+1)-xy(y-1)(y+1)(y2-1)
Mà:xy(x-1)(x+1)(x2+1) chia hết 2;3;5
=>xy(x-1)(x+1)(x2+1) chia hết cho 30
Cmtt:xy(y-1)(y+1)(y2+1) chia hết cho 30
Nên x5y-xy5 chia hết cho 30
Bài 2:
x2+y2+z2=y(x+z)
<=>x2+y2+z2-yx-yz=0
<=>2x2+2y2+2z2-2yx-2yz=0
<=>(x – y)2 + (y – z)2 + x2 + z2 = 0
<=>x – y = y – z = x = z = 0
<=>x=y=z=0
\(A=x^5y-xy^5=xy\left(x^4-y^4\right)=xy\left(x^2-y^2\right)\left(x^2+y^2\right)=xy\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(A=xy\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
Thây vì c/m A chia hết cho 30 ta chia nhỏ 30 =2.3.5
1)c/m A chia hết cho
1.1)nếu x hoặc y chẵn hiển nhiên
1.2 x và y lẻ => x-y phải chẵn {tổng đại số hai số lẻ là số chẵn}
=> A chia hết cho 2
2)c/m A chia hết cho 3
2.1)nếu x hoặc y =3k hiển nhiên
2.2 x=3k+1 và y=3t+1 => (x-y)=3(k-t) hiển nhiên chia hết cho 3
2.3 x=3k+1 và y=3t+2 => (x+y) =3(k+t+1) hiển nhiên chia hết cho 3
x,y vai trò như nhau => A chia hết cho 3 (**)
3)
c/m A chia hết cho 5
3.1)nếu x hoặc y =5k hiển nhiên
3.2 x=5k+1 và y=5t+1 => (x-y)=5(k-t) hiển nhiên chia hết cho 5
3.3 x=5k+1 và y=5t+2 => (x^2+y^2) =5(5k^2+5t^2+2k+2t+1) hiển nhiên chia hết cho 5
3.4 x=5k+1 và y=5t+3 => (x^2+y^2) =5(5k^2+5t^2+2k+2t+2) hiển nhiên chia hết cho 5
3.5 x=5k+1 và y=5t+4 => (x^2-y^2) =5(5k^2-5t^2-2k+2t-3) hiển nhiên chia hết cho 5
x,y vai trò như nhau các trường hợp khác tương tự => A chia hết cho 5 (**)
Kết luận
A chia hết cho 2,3,5 mà 2,3,5, nguyên tố => A chia hết cho 2.3.5 =30=> dpcm
p/s: có thể phân tích tiếp A --> biện luận luôn cho dài => trông bài cho hoàng tráng
A=(x+y)(x+2y)(x+3y)(x+4y)+y4
A=(x+y)(x+4y).(x+2y)(x+3y)+y4
A=(x2+5xy+4y2)(x2+5xy+6y2)+y4
A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4
A=(x2+5xy+5y2)2-y4+y4
A=(x2+5xy+5y2)2
Do x,y,Z nen x2+5xy+5y2 Z
A là số chính phương
a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4
= (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z thuộc Z nên x2 thuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5y2 thuộc Z
Vậy A là số chính phương.
a)
b) đặt A=a^5b-ab^5=a(a^4b-b^5)=a(b(a^4-b^4))=ab... chia hết cho 2 (1)
+) Nếu a,b đồng du khi chia cho 3 thi a-b chia het cho 3 suy ra A chia het cho 3 (2)
+) Nếu a,b ko dong du khi chia cho 3 thi a+b chia het cho 3 suy ra Âchi het cho 3 (3)
Tu (2),(3) suy ra A luon chia het cho 3 (4)
Ma ab(a-b)(a+b)(a^2+b^2) chia het cho 5 (5)
Tu (1),(4),(5) suy ra A chia het cho 2;3;5 Vậy A chia het cho 30
Xét hiệu \(\left(x^5+y^5+z^5\right)-\left(x+y+z\right)=\left(x^5-x\right)+\left(y^5-y\right)+\left(z^5-z\right)\)
Ta có: \(\hept{\begin{cases}x^5-x⋮30\\y^5-y⋮30\\z^5-z⋮30\end{cases}}\) (tự chứng minh)
=>\(\left(x^5-x\right)+\left(y^5-y\right)+\left(z^5-z\right)⋮30\)
Mặt khác \(x+y+z⋮30\)
=>\(x^5+y^5+z^5⋮30\) (đpcm)
Ta có: x5y-xy5=xy(x4-y4)=xy(x2-y2)(x2+y2)
=xy(x-y)(x+y)(x2+y2)
Ta cần cm bt trên chia hết cho 2,3 và 5
Nếu x,y cùng tính chẵn lẻ thì x-y chẵn=> x5y-xy5 chia hết cho 2 (1)
Nếu x,y không cùng tính chẵn lẻ thi x+y chẵn=>2 (2)
Từ (1) và (2)=> x5y-xy5 chia hết cho 2 với mọi x,y nguyên (13)
Nếu x hoặc y chia hết cho 3=>x5y-xy5 chia hết cho 3 (3)
Nếu x và y chia 3 có cùng số dư thì x-y chia hết cho 3=>x5y-xy5 chia hết cho 3 (4)
Nếu x,y chia 3 không cùng số dư thi x+y chia hết cho 3=>x5y-xy5 chia hết cho 3 (5)
Từ (3),(4) và (5)=>x5y-xy5 chia hết cho 3 với mọi x,y nguyên (14)
Nếu x hoặc y chia hết cho 5 thì x5y-xy5 chia hết cho 5 (6)
Nếu x chia 5 dư 1, y chia 5 dư 2 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (7)
Nếu x chia 5 dư 2, y chia 5 dư 3
và ngược lại thì x+y chia hết cho 5
=>x5y-xy5 chia hết cho 5 (8)
Nếu x chia 5 dư 3, y chia 5 dư 4 và ngược lại thì
x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (9)
Nếu x chia 5 dư 1, y chia 5 dư 4 và ngược lại thì x+y chia hết cho 5
=>x5y-xy5 chia hết cho 5 (10)
Nếu x chia 5 dư 1, y chia 5 dư 3 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (11)
Nếu x chia 5 dư 2, y chia 5 dư 4 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (12)
Từ (6),(7),(8),(9),(10),(11)và (12)
=> x5y-xy5 chia hết cho 5 với mọi x,y nguyên (15)
Từ (13),(14) và (15) Mà (3;4;5)=1
=>x5y-xy5 chia hết cho 30 với mọi x,y nguyên
=>đpcm