K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

Mình lám thử nha bạn !

Ta có : \(m.n=\left(m^2-n^2\right)\)

\(=m.n\left(m-n\right)\left(m+n\right)\)

= \(m^2-2mn+n^2\)

= \(\left(m-n\right)^2\)

=> Biểu thức luôn dương với mọi số nguyên m,n

=> \(\left(m-n\right)^2⋮6\)

15 tháng 2 2018

Ez nhé

\(A=5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)=25^n+5^n-18^n-12^n\)

Ta có : \(A=\left(25^n-18^n\right)-\left(12^n-5^n\right)⋮7\forall n\in N\)

           \(A=\left(25^n-12^n\right)-\left(18^n-5^n\right)⋮13\forall n\in Z\)

Mà \(\left(7;13\right)=1\) nên \(A⋮91\) (đpcm)

10 tháng 6 2017

GỌI \(\left(m^2n+2m,mn+1\right)=d\)

TA CÓ :   MN + 1 CHIA HẾT CHO d

=> m^2n+m chia hết cho d

=> m chia hết cho d

=> mn chia hết cho d

=> 1 chia hết cho d

Mà d thuộc Z

=> d = 1

=> đpcm

5 tháng 7 2016

xem lại câu a nhé bạn

30 tháng 9 2018

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2+2n\right)\)

\(=\left(n+1\right)n\left(n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

vì tích của 3 số tự nhiên liên tiếp chia hết cho 6

Mặt khác n và n+1 và n+2 là 3 số tự nhiên liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\forall n\left(đpcm\right)\)

23 tháng 6 2016

Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2) 
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên 
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2 
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1) 
=> đpcm

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=>\left(n+1\right)\left(n^2+2n\right)\)

\(=>n\left(n+1\right)\left(n+2\right)\)

Ta thấy \(n;\left(n+1\right);\left(n+2\right)\)là 3 số tự nhiên liên tiếp

Mà tích của 3 số tn liên tiếp luôn chia hết cho 6

=> \(n^2\left(n+1\right)+2n\left(n+1\right)\)chia hết ch 6 ( đpcm )

Cấm ai chép ...............

7 tháng 6 2017

Ta có: \(n^2\left(n+1\right)+2n\left(n+1\right)=\left(n+1\right)\left(n^2+2n\right)=\left(n+1\right)\left[n\left(n+2\right)\right]=n.\left(n+1\right).\left(n+2\right)\)

Vì tích 3 số nguyên liên tiếp luôn chia hết cho 6 nên đa thức trên luôn chia hết hco 6 với mọi số nguyên thuộc n

Theo đề bài ta có:

n2(n+1)+2n(n+1)= (n+1) (n2+2n)

= n(n+1) (n+2)

Vì ta nhận thấy n(n+1) là tích 2 số nguyên liên tiếp (1)

và n(n+1) (n+2) là tích 3 số nguyên liên tiếp (2)

Từ (1) và (2) suy ra:

n(n+1) (n+2) chia hết cho 6 với mọi số nguyên n