Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1^2+2^2+3^2+.......+n^2=1\times\left(2-1\right)+2\times\left(3-1\right)+.......+n\left(\left(n+1\right)-1\right)\)=\(\left(1.2+2.3+3.4+......+n\left(n+1\right)\right)-\left(1+2+3+.....+n\right)\)=\(\frac{n\left(n+1\right)\left(n+2\right)-0.1.2}{3}-\frac{n\left(n+1\right)}{2}=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
sử dụng qui nạp:
1² + 2² + 3² + 4² + ...+ n² = \(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*)
(*) đúng khi n= 1
giả sử (*) đúng với n= k, ta có:
1² + 2² + 3² + 4² + ...+ k² = \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1)
ta cm (*) đúng với n = k +1, thật vậy từ (1) cho ta:
1² + 2² + 3² + 4² + ...+ k² + (k + 1)² = \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) + (k + 1)²
= (k+1)\(\left(\frac{k\left(2k+1\right)}{6}+\left(k+1\right)\right)\)= (k + 1)\(\frac{2k^2+k+6k+6}{6}\)
= (k + 1)\(\frac{2k^2+7k+6}{6}\) = (k + 1)\(\frac{2k^2+4k+3k+6}{6}\)
= (k + 1)\(\frac{2k\left(k+2\right)+3\left(k+2\right)}{6}\) = (k + 1)\(\frac{\left(k+2\right)\left(2k+3\right)}{6}\)
vậy (*) đúng với n = k + 1, theo nguyên lý qui nạp (*) đúng với mọi n thuộc N*
a) 3n+2-2n+2+3n-2n
=(3n+2+3n)-(2n+2-2n)
=3n(33+1)-2n(22+1)
=3n.10-2n.5
Vì 2.5 chia hết cho 10 nên 2n.5 cũng chia hết cho 10
3n.10 chia hết cho 10 nên
3n.10-2n.5 chia hết cho 10
=>3n+2-2n+2+3n-2n chia hết cho 10
b)
3n+3+3n+1+2n+3+2n+2
=3n+1(32+1)+2n+2(2+1)
=3n+1.2.5+2n+1.3
=3.2.3n.5+2.3.2n+1
=3.2(3n.5+2n+1) chia hết cho 6
A=3n+2 - 2n+2 +3n-2n
=3n.32 -2n.22+3n-2n
=3n.(32+1) -2n.(22+1)
=3n.10-2n.5
=3n.10-2n-1.2.5
=3n.10-2n-1.10
=(3n-2n-1).10
=>(3n-2n-1) chia hết cho 10
=>A chia hết cho 10
Chúc bn học tốt !
Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n]
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5)
Suy ra S chia hết cho 10.
cảm ơnnnnnnnn bn mk đang rất buồn
Ta có :
B = 3n+3 - 2n+2 + 3n-1 - 2n+1 ( n ∈ N* )
=> B = ( 3n+3 + 3n-1 ) + ( 2n+3 - 2n+1 )
=> B = 3n-1 . ( 34 - 1 ) + 2n+1 . ( 22 + 1 )
=> B = 3n-1 . ( 81 - 1 ) + 2n+1 . ( 4 + 1 )
=> B = 3n-1 . 80 + 2n . 2 . 5
=> B = 3n-1 . 8 . 10 + 2n . 10
=> B = ( 3n-1 . 8 + 2n ) . 10 ⋮ 10 ( do 3n-1 . 8 + 2n ∈ N* với n ∈ N* )
Vậy với mọi số nguyên dương n thì B ⋮ 10
Chứng minh rằng mọi số nguyên dương n thì
B=3^n+3 - 2^n+3 + 3^n+1 - 2^n+1 chia hết cho 10
giúp mik nha
Ta có :
B = 3n+3 - 2n+2 + 3n-1 - 2n+1 ( n ∈ N* )
=> B = ( 3n+3 + 3n-1 ) + ( 2n+3 - 2n+1 )
=> B = 3n-1 . ( 34 - 1 ) + 2n+1 . ( 22 + 1 )
=> B = 3n-1 . ( 81 - 1 ) + 2n+1 . ( 4 + 1 )
=> B = 3n-1 . 80 + 2n . 2 . 5
=> B = 3n-1 . 8 . 10 + 2n . 10
=> B = ( 3n-1 . 8 + 2n ) . 10 ⋮ 10 ( do 3n-1 . 8 + 2n ∈ N* với n ∈ N* )
Vậy với mọi số nguyên dương n thì B ⋮ 10