Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT đúng với n=2
giả sử BĐT đúng với n=k , tức là: \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}< k\sqrt{\frac{k+1}{2}}\)
Ta phải chứng minh BĐT đúng vớới n=k+1:
\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}+\sqrt{k+1}< \left(k+1\right)\sqrt{\frac{k+2}{2}}\)
Ta thấy: \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}+\sqrt{k+1}< k\sqrt{\frac{k+1}{2}}+\sqrt{k+1}\)
Mà: \(k\sqrt{\frac{k+1}{2}}+\sqrt{k+1}< \left(k+1\right)\sqrt{\frac{k+2}{2}}\)(*)
Thậy vậy: (*)\(\Leftrightarrow\sqrt{k+1}\left(\frac{k}{\sqrt{2}}+1\right)< \left(k+1\right)\sqrt{\frac{k+2}{2}}\Leftrightarrow\frac{k}{\sqrt{2}}+1< \sqrt{k+1}\sqrt{\frac{k+2}{2}}\)
\(\Leftrightarrow\frac{k+\sqrt{2}}{\sqrt{2}}< \sqrt{k+1}\frac{\sqrt{k+2}}{\sqrt{2}}\Leftrightarrow k^2+2\sqrt{2k}+2< k^2+3k+2\)(luôn đúng)
Suy ra: \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}+\sqrt{k+1}< \left(k+1\right)\sqrt{\frac{k+2}{2}}\)
hay \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...\sqrt{n}< n\sqrt{\frac{n+1}{2}}\)
Bạn tham khảo tại đây
https://olm.vn/hoi-dap/detail/56101917412.html
Không chắc lắm đâu nhé !
Câu hỏi của Quỳnh Hương - Toán lớp 9 - Học toán với OnlineMath
Với mọi n nguyên thì \(B=3n+2\) luôn chia 3 dư 2
Mà mọi số chính phương khi chia 3 đều dư 0 hoặc 1
\(\Rightarrow\) B không phải là SCP
\(\Rightarrow\) A không phải số nguyên