Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a/(a+b) > a/(a+b+c)
b/(b+c) > b/(b+c+a)
c/(c+a) > c/(c+a+b)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] > [a/(a+b+c)] + [b/(a+b+c)] + [c/(a+b+c)]
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] > 1
Lại có: a/(a+b) < (a+b)/(a+b+c)
b/(b+c) < (b+c)/(b+c+a)
c/(c+a) < (c+a)/(c+a+b)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < [(a+b)/(a+b+c)] + [(b+c)/(a+b+c)] + [(c+a)/(a+b+c)]
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < [2.(a+b+c)]/(a+b+c)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < 2
Vậy .....
\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)(ĐK: a , b ,c > 0)
Ta có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{b}{a+b+c}>\frac{a+b+c}{a+b+c}=1\) (1)
Áp dụng BĐT: \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\) (ĐK: a,b,c thuộc N*).Ta thấy:
\(\left(a+b\right)< \frac{\left(a+b\right)}{a+b+c}\)
\(\left(b+c\right)< \frac{\left(b+a\right)}{a+b+c}\)
\(\left(c+a\right)< \frac{\left(c+b\right)}{a+b+c}\)
Cộng các vế lại. Ta có:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{\left(a+b\right)}{a+b+c}+\frac{\left(b+a\right)}{a+b+c}+\frac{\left(c+b\right)}{a+b+c}< \frac{2.\left(a+b+c\right)}{a+b+c}=2\) (2)
Từ (1) và (2), suy ra ĐPCM
a/a+b + b/b+c + c/c+a > a/a+b+c + b/a+b+c + c/a+b+c
> a+b+c/a+b+c = 1
-a+b-b-c+a+c-a
=-(a-a+a)+(b-b)-(c-c)
=-a+0-0
M ko phải số dương
Giải theo cách lp 6
- Nếu \(a\le0;b\le0\) hoặc \(a\ge0;b\ge0\) thì \(\left|a+b\right|=\left|a\right|+\left|b\right|\)
- Nếu a,b khác dấu và |a| > |b| thì |a+b| = |a| - |b| < |a| < |a| + |b|
- Nếu a,b khác dấu và |b| > |a| thì |a+b| = |b| - |a| < |b| < |a| + |b|
Vậy trong mỗi trường hợp của a và b ta luôn có |a+b| \(\le\) |a| + |b|