\(\frac{a+b}{2}\cdot\frac{a^2+b^2}{2}\cdot\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2020

ta sẽ chứng minh với mọi x,y luôn có \(\frac{x+y}{2}\cdot\frac{x^3+y^3}{2}\le\frac{x^4+y^4}{2}\)(*)

thật vậy, (*) tương đương với \(\left(x+y\right)\left(x^3+y^3\right)\le2\left(x^4+y^4\right)\Leftrightarrow xy\left(x^2+y^2\right)\le x^4+y^4\)

\(\Leftrightarrow\left(x-y\right)^2\left[\left(\frac{x+y}{2}\right)^2+\frac{3y^2}{4}\right]\ge0\), luôn đúng

khi đó áp dụng (*) ta được

\(\frac{a+b}{2}\cdot\frac{a^2+b^2}{2}\cdot\frac{a^3+b^3}{2}=\left[\frac{a+b}{2}\cdot\frac{a^3+b^3}{2}\right]\cdot\frac{a^2+b^2}{2}\le\frac{a^4+b^4}{2}\cdot\frac{a^2+b^2}{2}\le\frac{a^6+b^6}{2}\)(đpcm)

dấu đẳng thức xảy ra khi và chỉ khi a=b

14 tháng 3 2017

Này cậu ơi!

áp dụng bất đẳng thức cô si ta có:

\(a^2+b^2\ge2ab\Leftrightarrow2\left(a^2-ab+b^2\right)\ge a^2+b^2\)

\(\Leftrightarrow2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)

\(\Leftrightarrow\frac{a^3+b^3}{2}\ge\frac{a+b}{2}.\frac{a^2+b^2}{2}\)

1 tháng 7 2019

Xí bài 2 :

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a) Khi đó : \(\frac{a-b}{b}=\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\)

\(\frac{c-d}{d}=\frac{dk-d}{d}=\frac{d\left(k-1\right)}{d}=k-1\)

Ta có đpcm

b) \(\frac{a\cdot b}{c\cdot d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

\(\Leftrightarrow\frac{bk\cdot b}{dk\cdot d}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}\)

\(\Leftrightarrow\frac{b^2}{d^2}=\frac{b^2\cdot\left(k+1\right)^2}{d^2\cdot\left(k+1\right)^2}\)

\(\Leftrightarrow\frac{b^2}{d^2}=\frac{b^2}{d^2}\)( luôn đúng )

Ta có đpcm

1 tháng 7 2019

Bài 2 ez nhất,để mình!

a) Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\Leftrightarrow\frac{a-b}{b}=\frac{c-d}{d}^{\left(đpcm\right)}\)

b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)

Thay vào suy ra \(VP=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2}{d^2}\) (1)

Mặt khác \(VT=\frac{ab}{cd}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2) ta có đpcm

Bài 1Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\)Chững minh c=0Bài 2Cho tỉ lệ thức \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)Chững minh a + b+ c+ d = 0Bài 3Cho \(\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bz-cy}{a}\)Chững mình rằng \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)Bài 4Cho a + b = c + d và \(a^2+b^2+c^2=c^2+d^2\left(a,b,c,d\ne0\right)\)Chững minh rằng 4 số a,b, c, d lập thành 1 tỉ lệ thứcBài...
Đọc tiếp

Bài 1
Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\)
Chững minh c=0

Bài 2

Cho tỉ lệ thức \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

Chững minh a + b+ c+ d = 0

Bài 3

Cho \(\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bz-cy}{a}\)

Chững mình rằng \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Bài 4

Cho a + b = c + d và \(a^2+b^2+c^2=c^2+d^2\left(a,b,c,d\ne0\right)\)

Chững minh rằng 4 số a,b, c, d lập thành 1 tỉ lệ thức

Bài 5

Cho \(\left(x1P-y1Q\right)^{2n}+\left(x2P+y2Q\right)^{2m}+...+\left(xkP-ykQ\right)^{2k}\le0\left(n,m,...,k\inℕ^∗;P,Q\ne0\right)\)

Chứng minh rằng \(\frac{x1+x2+x3+...+xk}{y1+y2+y3+...+yk}\)

Bài 6

Biết rằng \(\hept{\begin{cases}a1^2+a2^2+a3^2=P^2\\b1^2+b2^2+b3^2=Q^2\end{cases}}\) và \(a1\cdot b1+a2\cdot b2+a3\cdot b3=P\cdot Q\)

Chứng minh \(\frac{a1}{b1}=\frac{a2}{b2}=\frac{a3}{b3}=\frac{P}{Q}\)

Bài 7

Cho 4 số a, b, c, d khác 0 thảo mãn \(\left(ad+bc\right)^2=4abcd\)

Chững minh rằng 4 số a, b, c ,d có thê rlaapj thành 1 tỉ lệ thức

Bài 8

Cho các số a, b, c thảo mãn \(\frac{a}{2010}=\frac{b}{2011}=\frac{c}{2012}\)

a. Tính \(M=\frac{2a-3b+c}{2c-3b}\)

b. Chứng minh rằng \(a\cdot\left(a-b\right)\cdot\left(b-c\right)=\left(a-c\right)^2\)

0
25 tháng 8 2018

Bài 1 : Thực hiện phép tính :

a, \(\frac{4}{5}+1\frac{1}{6}\cdot\frac{3}{4}\)

\(\frac{4}{5}+\frac{7}{6}\cdot\frac{3}{4}\)

\(\frac{4}{5}+\frac{7}{8}\)

\(\frac{32+35}{40}=\frac{67}{40}\)

b, \(\frac{2}{3}:\left(\frac{3}{4}\cdot\frac{4}{3}\right)+2\)

\(=\frac{2}{3}:1+2\)

\(=\frac{2}{3}+2=\frac{2+6}{3}=\frac{8}{3}\)

c, \(\frac{1}{2}\times\left(\frac{2}{3}+\frac{3}{5}\cdot\frac{5}{7}\right)+1\frac{1}{3}\)

\(=\frac{1}{2}\cdot\left(\frac{2}{3}+\frac{9}{35}\right)+\frac{4}{3}\)

\(=\frac{1}{2}\cdot\frac{97}{105}+\frac{4}{3}\)

\(=\frac{97}{210}+\frac{4}{3}=\frac{377}{210}\)

Bài 2 : Tìm \(x\inℤ\), biết :

a, \(\frac{2}{3}< \frac{x}{6}\le\frac{10}{3}\)

\(\Leftrightarrow\frac{4}{6}< \frac{x}{6}\le\frac{20}{6}\)

mà \(x\inℤ\Rightarrow\text{x}\in\) {\(5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20\)}

b, \(\frac{1}{3}+x=1\frac{1}{2}\)

\(\frac{1}{3}+x=\frac{3}{2}\)

\(x=\frac{3}{2}+\frac{\left(-1\right)}{3}\)

\(x=\frac{7}{6}\) (loại vì \(x\notinℤ\))

\(\Rightarrow x\in\varnothing\)

c, \(\frac{1}{7}+x=\frac{25}{14}+\frac{5}{14}\)

\(\frac{1}{7}+x=\frac{15}{7}\)

\(x=\frac{15}{7}+\frac{(-1)}{7}\)

\(x=\frac{14}{7}=2\).

3 tháng 10 2018

Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

\(\Rightarrow\frac{7b^2k^2+3bkb}{11b^2k^2-8b^2}=\frac{7d^2k^2+3dkd}{11d^2k^2-8d^2}\)

\(\Rightarrow\frac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\frac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}\)

\(\Rightarrow\frac{7k^2+3k}{11k^2-8}=\frac{7k^2+3k}{11k^2-8}\left(đpcm\right)\)

\(\Leftrightarrow\left(2a+13b\right)\left(3c-7d\right)=\left(2c+13d\right)\left(3a-7b\right)\)

\(\Leftrightarrow6ac-14ad+39bc-91bd=6ac-14bc+39ad-91bd\)

\(\Leftrightarrow-14ad+14bc=39ad-39bc\)

\(\Leftrightarrow-14\left(ad-bc\right)=39\left(ad-bc\right)\)

=>ad-bc=0

=>ad=bc

hay a/b=c/d

 

17 tháng 10 2018

\(B=\frac{2001}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{2}{2010}+\frac{1}{2001}\)

\(B=\left(2011-1-...-1\right)+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)\)

\(B=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}\)

\(B=2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)

\(\Rightarrow\)\(\frac{B}{A}=\frac{2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}}=2012\)

Vậy \(\frac{B}{A}=2012\)

Chúc bạn học tốt ~ 

17 tháng 10 2018

cảm ơn bạn