Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng bất đẳng thức cô si ta có:
\(a^2+b^2\ge2ab\Leftrightarrow2\left(a^2-ab+b^2\right)\ge a^2+b^2\)
\(\Leftrightarrow2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)
\(\Leftrightarrow\frac{a^3+b^3}{2}\ge\frac{a+b}{2}.\frac{a^2+b^2}{2}\)
Xí bài 2 :
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a) Khi đó : \(\frac{a-b}{b}=\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\)
và \(\frac{c-d}{d}=\frac{dk-d}{d}=\frac{d\left(k-1\right)}{d}=k-1\)
Ta có đpcm
b) \(\frac{a\cdot b}{c\cdot d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
\(\Leftrightarrow\frac{bk\cdot b}{dk\cdot d}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}\)
\(\Leftrightarrow\frac{b^2}{d^2}=\frac{b^2\cdot\left(k+1\right)^2}{d^2\cdot\left(k+1\right)^2}\)
\(\Leftrightarrow\frac{b^2}{d^2}=\frac{b^2}{d^2}\)( luôn đúng )
Ta có đpcm
Bài 2 ez nhất,để mình!
a) Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\Leftrightarrow\frac{a-b}{b}=\frac{c-d}{d}^{\left(đpcm\right)}\)
b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)
Thay vào suy ra \(VP=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2}{d^2}\) (1)
Mặt khác \(VT=\frac{ab}{cd}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2) ta có đpcm
Bài 1 : Thực hiện phép tính :
a, \(\frac{4}{5}+1\frac{1}{6}\cdot\frac{3}{4}\)
= \(\frac{4}{5}+\frac{7}{6}\cdot\frac{3}{4}\)
= \(\frac{4}{5}+\frac{7}{8}\)
= \(\frac{32+35}{40}=\frac{67}{40}\)
b, \(\frac{2}{3}:\left(\frac{3}{4}\cdot\frac{4}{3}\right)+2\)
\(=\frac{2}{3}:1+2\)
\(=\frac{2}{3}+2=\frac{2+6}{3}=\frac{8}{3}\)
c, \(\frac{1}{2}\times\left(\frac{2}{3}+\frac{3}{5}\cdot\frac{5}{7}\right)+1\frac{1}{3}\)
\(=\frac{1}{2}\cdot\left(\frac{2}{3}+\frac{9}{35}\right)+\frac{4}{3}\)
\(=\frac{1}{2}\cdot\frac{97}{105}+\frac{4}{3}\)
\(=\frac{97}{210}+\frac{4}{3}=\frac{377}{210}\)
Bài 2 : Tìm \(x\inℤ\), biết :
a, \(\frac{2}{3}< \frac{x}{6}\le\frac{10}{3}\)
\(\Leftrightarrow\frac{4}{6}< \frac{x}{6}\le\frac{20}{6}\)
mà \(x\inℤ\Rightarrow\text{x}\in\) {\(5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20\)}
b, \(\frac{1}{3}+x=1\frac{1}{2}\)
\(\frac{1}{3}+x=\frac{3}{2}\)
\(x=\frac{3}{2}+\frac{\left(-1\right)}{3}\)
\(x=\frac{7}{6}\) (loại vì \(x\notinℤ\))
\(\Rightarrow x\in\varnothing\)
c, \(\frac{1}{7}+x=\frac{25}{14}+\frac{5}{14}\)
\(\frac{1}{7}+x=\frac{15}{7}\)
\(x=\frac{15}{7}+\frac{(-1)}{7}\)
\(x=\frac{14}{7}=2\).
Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
\(\Rightarrow\frac{7b^2k^2+3bkb}{11b^2k^2-8b^2}=\frac{7d^2k^2+3dkd}{11d^2k^2-8d^2}\)
\(\Rightarrow\frac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\frac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}\)
\(\Rightarrow\frac{7k^2+3k}{11k^2-8}=\frac{7k^2+3k}{11k^2-8}\left(đpcm\right)\)
\(\Leftrightarrow\left(2a+13b\right)\left(3c-7d\right)=\left(2c+13d\right)\left(3a-7b\right)\)
\(\Leftrightarrow6ac-14ad+39bc-91bd=6ac-14bc+39ad-91bd\)
\(\Leftrightarrow-14ad+14bc=39ad-39bc\)
\(\Leftrightarrow-14\left(ad-bc\right)=39\left(ad-bc\right)\)
=>ad-bc=0
=>ad=bc
hay a/b=c/d
\(B=\frac{2001}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{2}{2010}+\frac{1}{2001}\)
\(B=\left(2011-1-...-1\right)+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)\)
\(B=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}\)
\(B=2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)
\(\Rightarrow\)\(\frac{B}{A}=\frac{2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}}=2012\)
Vậy \(\frac{B}{A}=2012\)
Chúc bạn học tốt ~
ta sẽ chứng minh với mọi x,y luôn có \(\frac{x+y}{2}\cdot\frac{x^3+y^3}{2}\le\frac{x^4+y^4}{2}\)(*)
thật vậy, (*) tương đương với \(\left(x+y\right)\left(x^3+y^3\right)\le2\left(x^4+y^4\right)\Leftrightarrow xy\left(x^2+y^2\right)\le x^4+y^4\)
\(\Leftrightarrow\left(x-y\right)^2\left[\left(\frac{x+y}{2}\right)^2+\frac{3y^2}{4}\right]\ge0\), luôn đúng
khi đó áp dụng (*) ta được
\(\frac{a+b}{2}\cdot\frac{a^2+b^2}{2}\cdot\frac{a^3+b^3}{2}=\left[\frac{a+b}{2}\cdot\frac{a^3+b^3}{2}\right]\cdot\frac{a^2+b^2}{2}\le\frac{a^4+b^4}{2}\cdot\frac{a^2+b^2}{2}\le\frac{a^6+b^6}{2}\)(đpcm)
dấu đẳng thức xảy ra khi và chỉ khi a=b