K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

\(\dfrac{a}{b}=\dfrac{c}{d}=>ad=bc=>ab+ad=ab+bc\)

\(a\left(b+d\right)=b\left(a+c\right)\)

\(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)

28 tháng 7 2017

đúng

18 tháng 4 2017

Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\) suy ra \(\dfrac{a}{c}=\dfrac{b}{d}\)

Theo tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Suy ra: \(\dfrac{a+b}{a-c}=\dfrac{c+d}{c-d}\)


11 tháng 7 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk\)\(c=dk\)

Nên \(\dfrac{a+b}{c-d}=\dfrac{bk+b}{dk-d}=\dfrac{b\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\Rightarrow\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) (với \(a-b\ne0,c-d\ne0\))

Vậy \(\dfrac{a}{b}=\dfrac{c}{d}thì\)\(\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) ( \(a-b\ne0,c-d\ne0\))

14 tháng 10 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Suy ra: \(\dfrac{a}{b}=\dfrac{bk}{b}=k\left(1\right)\)

\(Và:\) \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)

Vậy \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\) \(\left(ĐPCM\right)\)

14 tháng 10 2018

Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)

Áp dụng t/c' dãy tỉ số bằng nhau , ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

Vậy \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\left(đpcm\right)\)

17 tháng 9 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có: \(\dfrac{a+b}{a-b}=\dfrac{bk+b}{bk-b}=\dfrac{b\left(k+1\right)}{b\left(k-1\right)}=\dfrac{k+1}{k-1}\) (1)

\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

17 tháng 9 2017

Ta có: \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\).Theo tính chất của dãy tỉ số bằng nhau:

\(\Rightarrow\)\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)

\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)\(\Leftrightarrow\)\(\dfrac{a+b}{a-b}\)=\(\dfrac{c+d}{c-d}\)

Vậy \(\dfrac{a+b}{a-b}\)=\(\dfrac{c+d}{c-d}\)

Nếu bạn muốn làm cách cơ bản thì hãy làm theo mình.Còn nếu bạn học toán nâng cao thì làm theo cách bạn Linh hay hơn.Chúc bạn học tốt

21 tháng 5 2017

a, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) ( k # 0 )

\(\Rightarrow\) \(a=b.k\)

\(c=d.k\)

Ta có: \(\dfrac{a+b}{b}=\dfrac{b.k+b}{b}=\dfrac{b.\left(k+1\right)}{b}=k+1\) (1)

\(\dfrac{c+d}{d}=\dfrac{d.k+d}{d}=\dfrac{d.\left(k+1\right)}{d}=k+1\) (2)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

b,

, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) ( k # 0 )

\(\Rightarrow\) \(a=b.k\)

\(c=d.k\)

Ta có: \(\dfrac{a}{a+b}=\dfrac{b.k}{b.k+b}=\dfrac{b.k}{b.\left(k+1\right)}=\dfrac{k}{k+1}\) (1)

\(\dfrac{c}{c+d}=\dfrac{d.k}{d.k+d}=\dfrac{d.k}{d.\left(k+1\right)}=\dfrac{k}{k+1}\) (2)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

17 tháng 6 2017

surf trc khi hỏi

17 tháng 6 2017

ko thik surf trc khi ? đấy bn có ý gì ko nếu bn ko thik trả lời thì thôi mik ko ép chứ mik thik hỏi gì thì kệ mik mong Ace Legona hiểu cho.hihi

19 tháng 9 2017

Lần sau khi hỏi nhớ tìm xem có câu nào tương tự không nhé.

Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

Vậy nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) ( a khác b, c khác d ) thì \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

8 tháng 10 2017

như vậy cũng tốt mà

10 tháng 6 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) thì \(a=b.k\) , \(c=d.k\)

Ta tính giá trị của các tỉ số \(\dfrac{a-b}{a};\dfrac{c-d}{c}\) theo \(k\)

\(\dfrac{a-b}{a}=\dfrac{b.k-b}{b.k}=\dfrac{b.\left(k-1\right)}{b.k}=\dfrac{k-1}{k}\left(1\right)\)

\(\dfrac{c-d}{c}=\dfrac{d.k-d}{d.k}=\dfrac{d\left(k-1\right)}{d.k}=\dfrac{k-1}{k}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) suy ra \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

29 tháng 7 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\b=ck\end{matrix}\right.\)

Ta có : \(\dfrac{a-b}{a}=\dfrac{bk-b}{bk}=\dfrac{b\left(k-1\right)}{k}=\dfrac{k-1}{k}\left(1\right)\)

\(\dfrac{c-d}{c}=\dfrac{dk-d}{dk}=\dfrac{d\left(k-1\right)}{dk}=\dfrac{k-1}{k}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra : \(\dfrac{a-b}{a}=k=\dfrac{c-d}{c}\)

\(\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\left(ĐPCM\right)\)

Vậy \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

8 tháng 4 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

=> Ta có: \(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\) (1)

\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\) (2)

Từ (1) và (2) => \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\) ( đpcm)

8 tháng 4 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left[{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (1)

Thay (1) vào đề bài:

\(VT=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\)

\(VP=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\)

Khi đó: \(VT=VP\)

hay \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

Vậy \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\) khi \(\left[{}\begin{matrix}a,b,c,d\ne0\\a\ne b;c\ne d\end{matrix}\right.\).

8 tháng 4 2017

a) Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\\ \Rightarrow a=bk;c=dk\)

Ta có:

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)

Từ (1) và (2) suy ra:

\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\left(đpcm\right)\)

b) Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\\ \Rightarrow a=bk;c=dk\)

Ta có:

\(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\left(1\right)\)

\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\left(2\right)\)

Từ (1) và (2) suy ra:

\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\left(đpcm\right)\)

11 tháng 12 2017

a/ đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk,c=dk\)

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\)(1)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\)(2)

từ (1);(2) nên \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)