K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

Ta có: ad=bc (1)

Chia 2 vế của (1) cho bd ta có:

\(VT=\frac{ad}{bd}=\frac{a}{b}\left(2\right)\)

\(VP=\frac{bc}{bd}=\frac{c}{d}\left(2\right)\)

Từ (1) và (2) ta có: \(\frac{a}{b}=\frac{c}{d}\)

4 tháng 10 2015

\(ad=bc\Rightarrow ad:dc=bc:dc\Rightarrow\frac{ad}{dc}=\frac{bc}{dc}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

4 tháng 10 2015

ad=bc => ad:dc=bc:dc => ad/dc=bc/dc=> a/c=b/d

đúng ko?????

1 tháng 9 2015

\(ad=bc=>ad:dc=bc:dc=>\frac{ad}{dc}=\frac{bc}{dc}=>\frac{a}{c}=\frac{b}{d}\)

nếu a/c=b/d thì a.d/cd=bc/cd=>ad=bcthí a/c=b/d

27 tháng 9 2017

Ta có :

\(ad=bc\left(1\right)\)

Chia cả 2 vế của \(\left(1\right)\) cho \(bd\) ta được :

\(VT=\dfrac{ad}{bd}=\dfrac{a}{b}\left(2\right)\)

\(VP=\dfrac{bc}{bd}=\dfrac{c}{d}\left(3\right)\)

Từ \(\left(2\right)+\left(3\right)\Leftrightarrowđpcm\)

27 tháng 9 2017

Từ có đẳng thức: \(ad=bc\)

\(\Rightarrow\dfrac{ad}{cd}=\dfrac{bc}{cd}\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\) (đpcm)

31 tháng 7 2016

Ta có: ad=bc

=>ad:cd=bc:cd

=>\(\frac{a}{c}=\frac{b}{d}\)

29 tháng 11 2016

Ta có:\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

 

28 tháng 12 2016

con Alayna nay ngu vai thon

6 tháng 11 2017

Từ \(ad=bc\)(theo đề bài)

=> \(\frac{d}{b}=\frac{c}{a}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)(điều phải chứng minh)

6 tháng 11 2017

ad=bc ( a,c là ngoại tỉ ; d,b là trung tỉ . Ta có thể đổi vị trí trung tỉ và ngoại tỉ cho nhau )

ad=bc <=> \(\hept{\begin{cases}\frac{a}{b}=\frac{b}{d}\\\frac{a}{c}=\frac{b}{d}\\\frac{d}{c}=\frac{b}{a}\end{cases}}\)

Từ tỉ lệ đầu tiên ta có thể => đpcm

26 tháng 9 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Xét VT \(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

Xét VP \(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

Từ (1) và (2) ->Đpcm

26 tháng 9 2016

Đặt : \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Xét : VT :

\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(a\right)\)

Xé VP :
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(b\right)\)
Từ ( a ) và ( b )
=> Tỉ lệ thứ trên đúng 
=> ĐPCM

 

20 tháng 9 2019

làm  nhân chéo biểu thức kia đi sẽ hiểu

20 tháng 9 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)