Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
B= 9+99+999+..+999...9(50 chữ số 9)
B= 10-1+100-1+1000-1+...+100...0(50 chữ số 0)-1
B=[10+100+1000+...+100...0(50 chữ số 0)]-(1+1+1+...+1)(50 số hạng 1)
B= 111...10(50 chữ số 1) - 50
B = 111...1060 (48 chữ số 1)
1. Tính
A = 9 + 99 + 999 + 9999
A = 108 + 999 + 9999
A = 1170 + 9999
A = 11106
a) $3^8:3^6=3^{8-6}=3^2$
$19^7:19^3=19^{7-3}=19^4$
$2^{10}:8^3=2^{10}:(2^3)^3=2^{10}:2^9=2^{10-9}=2^1$
$12^7:6^7=(12:6)^7=2^7$
$27^5:81^3=(3^3)^5:(3^4)^3=3^{15}:3^{12}=3^{15-12}=3^3$
b) $10^6:10=10^{6-1}=10^5$
$5^8:25^2=5^8:(5^2)^2=5^8:5^4=5^{8-4}=5^4$
$4^9:64^2=4^9:(4^3)^2=4^9:4^6=4^{9-6}=4^3$
$2^25:32^4=2^{25}:(2^5)^4=2^{25}:2^{20}=2^{25-20}=2^5$
$18^3:9^3=(18:9)^3=2^3$
\(\cdot3^8:3^6=3^{8-6}=3^2\)
\(\cdot19^7:19^3=19^{7-3}=19^4\)
\(\cdot2^{10}:8^3=2^{10}:\left(2^3\right)^3=2^{10}:2^9=2\)
\(\cdot12^7:6^7=\left(12:6\right)^7=2^7\)
\(\cdot27^5:81^3=\left(3^3\right)^5:\left(3^4\right)^3=3^{15}:3^{12}=3^3\)
\(\cdot10^6:10=10^{6-1}=10^5\)
\(\cdot5^8:25^2=5^8:\left(5^2\right)^2=5^8:5^4=5^4\)
\(\cdot4^9:64^2=4^9:\left(4^3\right)^2=4^9:4^6=4^3\)
\(2^{25}:32^4=2^{25}:\left(2^5\right)^4=2^{25}:2^{20}=2^5\)
\(18^3:9^3=\left(18:9\right)^3=2^3\)
bài 1
a) ( 864 . 48 - 432 . 96 ) : 864 . 432 b) ( 7256 . 4375 - 725 ) : ( 3650 + 4375 . 7255 )
=( 41 472-41 472) :864 . 432 = ( 31745000 - 725 ) : ( 3650 + 31740625 )
= ( 0: 864 ) . 432 = 31744275 : 31744275
=0.432=0 =1
bài 2 mik lm sau giúp bn nhé
bài 1
a) ( 864 . 48 - 432 . 96 ) : 864 . 432 b) ( 7256 . 4375 - 725 ) : ( 3650 + 4375 . 7255 )
=( 41 472-41 472) :864 . 432 = ( 31745000 - 725 ) : ( 3650 + 31740625 )
= ( 0: 864 ) . 432 = 31744275 : 31744275
=0.432=0 =1
bài 2 tự làm
1,
a, \(11.11.11=11^3\)
b,\(55.5.5.13.13=55.5^2.13^2\)
c, \(3^7.3^{10}.3^2=3^{\left(7+10+2\right)}=3^{19}\)
d, \(2^5.2^6.2^7.2.2.2=2^5.2^6.2^7.2^3\)
e, \(2^9:2^3.2^4=2^6.2^4=2^{10}\)
2,
\(4^9:8^5=8\)
\(32^{10}:8^5=4^{10}.8^{10}:8^5=4^{10}.8^5\)
\(9^{15}:27^{10}=9^{15}:9^{10}.3^{10}=9^5.3^{10}\)( tự tính)
3,
Ta có:
\(7^{200}=7^{2.100}=\left(7^2\right)^{100}=49^{100}\)
\(2^{700}=2^{7.100}=\left(2^7\right)^{100}=128^{100}\)
Vì \(128^{100}>49^{100}\)nên \(2^{700}>7^{200}\)
Chúc các bạn học tốt