K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2018

Bài 1 : 

a.Ta có 1 - 1/2 + 1/3 - 1/4 + ... + 1/199 - 1/200 
=(1+1/2+1/3+1/4+.....+1/199+1/200) -2(1/2+1/4+1/6+......+1/200) 
=(1+1/2+1/3+1/4+.....+1/199+1/200) -(1+1/2+1/3+.....+1/100) 
=1/101+1/102+....+1/199+1/200

b.Tổng quát bạn tự làm nhé

Bài 1 :

Ta giải bài toán tổng quát :chứng minh rằng : với n là số tự nhiên lớn hơn 1 , ta luô có :

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2n-1}\)\(-\frac{1}{2n}\)

\(=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)

Thật vậy ,kí hiệu \(S2n=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n}\)thì ta có :

\(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{2n}=S2n-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2n}\right)\)

\(=S2n-\left(1+\frac{1}{2}+...+\frac{1}{n}\right)=\frac{1}{n+1}+\frac{1}{n+2}+..+\frac{1}{2n}\)

Bài toán ở câu a chỉ là trường hợp riêng của bài toán trên với \(n=100\)

Bài 2 :

Đặt \(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{15}\left(1\right)\)

\(T=1.3.5.7...15\)( Tích các số lẻ bé hơn hoặc bằng 15 )

Nhân 2 vế của ( 1 ) với 2^2 .T ta được :

\(S.2^2T=\frac{2^2T}{2}+\frac{2^2T}{3}+\frac{2^2T}{4}+...+\frac{2^2T}{15}\left(2\right)\)

Dễ thấy tất cả các số hạng ở vế phải của ( 2) ,trừ số hặng \(\frac{2^2T}{2^3}\)đều là số tự nhiên ,suy ra vế phải có tổng không phải là số tự nhiên .Do đó S không phải là số tự nhiên

Chúc bạn học tốt ( -_- )

18 tháng 4 2019

Ta có: \(\frac{1}{2^2}>0\)

           \(\frac{1}{3^2}>0\)

           ................

            \(\frac{1}{100^2}>0\)

\(\Rightarrow A>0\left(1\right)\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)

          \(\frac{1}{3^2}< \frac{1}{2.3}\)

           ...................

            \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}< 1\)

\(\Rightarrow A< 1\left(2\right)\)

Từ (1) và (2) \(\Rightarrow0< A< 1\)

Vậy A ko là STN.

18 tháng 4 2019

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

...

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}< 1\)

Vậy A không phải là một số tự nhiên

27 tháng 2 2016

các bạn xem mình làm có đúng không ??

Tổng S gồm 15 phân số từ \(\frac{1}{2}\) đến \(\frac{1}{16}\) . Mẫu chung của cá phân số là :

BCNN( 2 ; 3 ; 4 ; .... ; 15 ; 16 ) = 24.32.5.7.11.13 = 5.7.9.11.13.16 .

Phân số  \(\frac{1}{16}\) sau khi quy đồng mẫu là : \(\frac{1}{16}=\frac{5.7.9.11.13}{5.7.9.11.13.16}\) là một phân số có tử lẻ và mẫu chẵn

Tử của 14 phân số còn lại sau khi quy đồng là số chẵn . Vậy tổng của 15 phân số đã cho là 1 phân số 

có tử lẻ , mẫu chẵn , nên không là số tự nhiên

22 tháng 4 2017

A = 1/1x2 + 1/2x3 + 1/3x4 + ........... + 1/15x16

A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + .............. + 1/15 - 1/16

A = 1 - 1/16

A = 15/16

Chúc bạn học giỏi

22 tháng 4 2017

Tao cá cái thằng k đúng cho thằng lớp 5 kia nó học lớp 4

Sở dĩ là điều bài thiếu điều kiện để có thể kết luận rằng đây có phải là STN hay ko

Nên tốt nhất là mấy thằng cấp dưới ko hiểu gì thì đừng có k/l lung tung và cũng bỏ cái tính thể hiện đê

8 tháng 3 2018

A = \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)

A = \(\frac{6}{12}+\frac{4}{12}+\frac{3}{12}\)

A = \(\frac{13}{12}\)

Vì 13 \(⋮̸\)12 nên A không phải là số tự nhiên 

Vậy A không phải là số tự nhiên

8 tháng 3 2018

Có : 

A = 1/2  +1/3  +1/4

   = 13/12

Mà 13/12 ko phải là số tự nhiên

=> tổng trên ko phải là số tự nhiên

Tk mk nha

20 tháng 5 2016

Xét 1/2 + 1/3 + 1/4 
1/2 + 1/4 = (2+4)/(2.4) = 2.3/[(3-1)(3+1)] = 2.3/(3^2 - 1) > 2.3/3^2 = 2/3 = 2.(1/3) 
---> 1/2+1/3+1/4 > 3.(1/3) = 1 (1) 
Lại xét 1/5 + 1/6 + ... + 1/9 + ... + 1/13 
1/8+1/10 = (8+10)/(8.10) = 2.9/(9^2 - 1) > 2.9/9^2 = 2/9 = 2.(1/9) 
Tương tự cm được 1/7+1/11 > 2.(1/9) ; 1/6+1/12 > 2.1/9; ...; 1/5+1/13 > 2.1/9 
---> 1/5+1/6+ ... + 1/13 > 9.(1/9) = 1 (2) 
Tg tự, cm được 1/14+1/15+ ... + 1/38 > 25.(1/25) = 1 (3) 
(1),(2),(3) ---> A> 3 (*) 
Mặt khác 
1/2 + 1/3 + 1/6 = 1 (4) 
1/4 + 1/5 + 1/20 = 1/2 (5) 
1/7 + 1/8 + 1/9 < 3.(1/7) = 3/7 (6) 
1/10+1/11+ ...+1/14 < 5.(1/10) = 1/2 (7) 
1/15+1/16+ ...+1/19 < 5.(1/15) = 1/3 (8) 
1/21+1/22+ ...+1/26 < 6.(1/21) = 2/7 (9) 
1/27+1/28+ ...+1/50 < 24.(1/27) = 8/9 (10) 
Cộng (4),(5),(6),(7), (8),(9),(10) ---> a < 2 + 5/7 + 11/9 < 2 + 7/9 + 11/9 = 4 (**) 
Từ (*) và (**) ---> 3 < a < 4 ---> a ko phải là số tự nhiên. 

9 tháng 3 2017

Để quy đồng các mẫu của các phân số trong tổng A = \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\), ta chọn mẫu chung là tích của 26 với các thừa số lẻ nhỏ hơn 100 . Gọi k1 , k2 , ... k100 là các thừa số phụ tương ứng  , tổng A có dạng : B = \(\frac{\left(k1+k2+k3+...+k100\right)}{2^6.3.5.7....99}\)

Trong 100 phân số của tổng A chỉ có duy nhất phân số \(\frac{1}{64}\)có mẫu chứa 26 nên trong các thừa số phụ k1 , k2 , ... , k100 chỉ có k64 ( thừa số phụ của \(\frac{1}{64}\)) là số lẻ ( bằng 3.5.7...99 ) , còn các thừa số phụ khác đều chẵn ( vì chứa ít nhất một thừa số 2 ) do đó B ( tức là A ) không thể là số tự nhiên