K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2016

A = abc + bca + cab

=> A =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )

=>A = 100a + 10b + c + 100b  + 10c + a + 100c + 10a + b

=> A = 111a + 111b + 111c

=> A= 111( a+b+c )= 37 . 3( a+b + c)

giả sử A là số chính phương thì A phải chứa thừa số nguyên tố 37 với số mũ chẵn nên

 3(a+b+c) chia hết 37

  => a+b+c chia hết cho 37 

Điều này không xảy ra vì           1 \(\le\) a + b + c \(\le\) 27

 A = abc + bca + cab không phải là số chính phương

16 tháng 1 2016

mình biết làm như vì lý do ngại giải quá nên bạn thông cảm vào đây:GIÚP TÔI GIẢI TOÁn

16 tháng 1 2016

Để A = abc + bca + cab = 111(a + b + c) = 3.37(a + b + c)

Để A là số chính phương thì a + b + c chia hết cho 3.37 

nhưng 3<a + b + c>27 nên a + b + c không chia hết cho 37

Vậy A không là số chính phương.

9 tháng 12 2016

A=abc+bca+cab= 
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)= 
1011*(a+b+c) =3*337*(a+b+c) 

Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*) 

Vậy không tồn tại số chính phương A

A=abc+bca+cab= 
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)= 
1011*(a+b+c) =3*337*(a+b+c) 

Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*) 

Vậy không tồn tại số chính phương A

Hok tốt !

7 tháng 12 2014

Ta có:

A=abc+bca+cab = (100a+10b+c) + (100b+10c+a)+(100c+10a+b)   

                     =111a+111b+111c

                     =111(a+b+c)

Để A là số  chính phương thì suy ra a+b+c bé nhất phải bằng 111.

Mà a;b;c là số tự nhien bé hơn 10 nên a+b+c<30

và 111>30 nên a+b+c không thể bằng 111

Vậy A không phải là số chính phương

9 tháng 1 2016

Ta tách đến kết quả: A=111(a+b+c)
Vì a,b,c thuộc N* (vì 3 số trên gạch đầu bạn ạ) => a+b+c thuộc N*
                                                                       Mà 111 chia hết cho 111
                                                                       Do đó [111 (a+b+c)] chia hết cho 111
                                                                       hay A chia hết cho 111
                                Mà A là số chính phương => A chia hết cho 111^2
                                Như vậy vì a+b+c thuộc N* (khác 0) nên a+b+c bé nhất phải bằng 111 (*)
                                Lại thấy a,b,c là các chữ số nên a+b+c nhỏ hơn hoặc bằng 27, trái với (*)
Ctỏ A không phải là số chính phương.
P/s: Tbày theo ý bạn nhé, mik viết một số cái k cần nhưng cho dễ hiểu ý mak ^^
                 
 

9 tháng 7 2015

Ta có :abc + bca + cab = 111a+ 111b+111c=111(a+b+c)= 3.37.(a+b+c)

Vì SCP chứa các thừ số ng tố với số mũ chẵn nên 3. 37.(a+b+c)=3.37.k^2

Vô lí vì 3<a+b+c<27

Vậy , abc+bca+cba ko là số chính phương.

1li-ke nha ! > . < !

31 tháng 7 2016

mình ko hiểu cách giải này của bạn ở cái chỗ bạn bảo vô lý đó

11 tháng 12 2015

1, S=abc+bca+cab=
=(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)
= 1011*(a+b+c) =3*337*(a+b+c) 
Vì 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn
Vậy abc + bca + cab không phải là số chính phương

2,Ta có 10 ≤ n ≤ 99 nên 21 ≤ 2n+1 ≤ 199. Tìm số chính phương lẻ trong khoảng trên 
ta được 25; 49; 81; 121; 169 tương ứng với số n bằng 12; 24; 40; 60; 84. 
Số 3n+1 bằng 37; 73; 121; 181; 253.Chỉ có 121 là số chính phương. 
Vậy n = 40 

11 tháng 12 2015

1) S=abc+bca+cab=
=(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)
= 1011*(a+b+c) =3*337*(a+b+c) 
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn
Vậy abc + bca + cab không phải là số chính phương

2)   Xin lỗi mình chỉ biết làm câu 1 thôi

 

1 tháng 3 2016

A=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)

Do 3 & 337 là số nguyên tố, để A là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)

Vậy không tồn tại số chính phương A