Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O M N
a)
Các véc tơ cùng phương với \(\overrightarrow{AB}\) là:
\(\overrightarrow{MO};\overrightarrow{OM};\overrightarrow{MN};\overrightarrow{NM};\overrightarrow{NO};\overrightarrow{ON};\overrightarrow{DC};\overrightarrow{CD};\overrightarrow{BA};\overrightarrow{AB}\).
Hai véc tơ cùng hướng với \(\overrightarrow{AB}\) là:
\(\overrightarrow{MO};\overrightarrow{ON}\).
Hai véc tơ ngược hướng với \(\overrightarrow{AB}\) là:
\(\overrightarrow{OM};\overrightarrow{ON}\).
b) Một véc tơ bằng véc tơ \(\overrightarrow{MO}\) là: \(\overrightarrow{ON}\).
Một véc tơ bằng véc tơ \(\overrightarrow{OB}\) là: \(\overrightarrow{DO}\).
Do \(\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{0}\) nên hai véc tơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\) đối nhau.
a)
\(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{0}\) nên O là trung điểm của AB.
b) \(\overrightarrow{OB}=\overrightarrow{OA}+\overrightarrow{AB}=\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{0}\) nên \(O\equiv B\).
a/ \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AE}+\overrightarrow{ED}+\overrightarrow{BF}+\overrightarrow{FE}+\overrightarrow{CD}+\overrightarrow{DF}\)
\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}+\overrightarrow{ED}+\overrightarrow{DF}+\overrightarrow{FE}\)
\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}+\overrightarrow{EF}+\overrightarrow{FE}\)
\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}\)
b/ Theo tính chất trung tuyến:
\(\left\{{}\begin{matrix}\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AK}\\\overrightarrow{BA}+\overrightarrow{BC}=2\overrightarrow{BM}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{AC}+\overrightarrow{BC}=2\overrightarrow{AK}+2\overrightarrow{BM}\)
\(\overrightarrow{AC}=\overrightarrow{AK}+\overrightarrow{KC}=\overrightarrow{AK}+\frac{1}{2}\overrightarrow{BC}\)
\(\Rightarrow\overrightarrow{BC}=\overrightarrow{AK}+2\overrightarrow{BM}-\frac{1}{2}\overrightarrow{BC}\Rightarrow\overrightarrow{BC}=\frac{2}{3}\overrightarrow{AK}+\frac{4}{3}\overrightarrow{BM}\)
\(\Rightarrow\overrightarrow{AC}=\overrightarrow{AK}+\frac{1}{2}\left(\frac{3}{2}\overrightarrow{AK}+\frac{4}{3}\overrightarrow{BM}\right)=...\)
\(\overrightarrow{AB}=\overrightarrow{AC}-\overrightarrow{BC}=...\)
\(\overrightarrow{AN}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}=\frac{\overrightarrow{AB}}{2}+\frac{\overrightarrow{AC}}{2}=\overrightarrow{AM}+\overrightarrow{AP}\)
\(\overrightarrow{AN}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}\)
\(\overrightarrow{BP}=\frac{\overrightarrow{BA}+\overrightarrow{BC}}{2}\)
\(\overrightarrow{CM}=\frac{\overrightarrow{CB}+\overrightarrow{CA}}{2}\)
\(\Rightarrow\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\frac{\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{BA}+\overrightarrow{CA}+\overrightarrow{BC}+\overrightarrow{CB}}{2}=\overrightarrow{0}\)
a/ \(\overrightarrow{DA}-\overrightarrow{DB}=\overrightarrow{DA}+\overrightarrow{BD}=\overrightarrow{BA}\)
\(\overrightarrow{OD}-\overrightarrow{OC}=\overrightarrow{OD}+\overrightarrow{CO}=\overrightarrow{CD}\)
Mà \(\overrightarrow{BA}=\overrightarrow{CD}\) (t/c hình bình hành) \(\Rightarrow\) đpcm
b/ Theo tính chất trung tuyến:
\(\left\{{}\begin{matrix}\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AK}\\\overrightarrow{BA}+\overrightarrow{BC}=2\overrightarrow{BM}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{AC}+\overrightarrow{BC}=2\overrightarrow{AK}+2\overrightarrow{BM}\)
\(\Rightarrow\overrightarrow{AC}+\overrightarrow{BA}+\overrightarrow{AC}=2\overrightarrow{AK}+2\overrightarrow{BM}\)
\(\Rightarrow2\overrightarrow{AC}-\overrightarrow{AB}=2\overrightarrow{AK}+2\overrightarrow{BM}\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AK}\\2\overrightarrow{AC}-\overrightarrow{AB}=2\overrightarrow{AK}+2\overrightarrow{BM}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\frac{4}{3}\overrightarrow{AK}+\frac{2}{3}\overrightarrow{BM}\\\overrightarrow{AB}=\frac{2}{3}\overrightarrow{AK}-\frac{2}{3}\overrightarrow{BM}\end{matrix}\right.\)
\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}\)
b/
\(2\left(\overrightarrow{JA}+\overrightarrow{AB}+\overrightarrow{DA}+\overrightarrow{AI}\right)=2\left(\overrightarrow{JB}+\overrightarrow{DI}\right)=2\left(\overrightarrow{JD}+\overrightarrow{DB}+\overrightarrow{DB}+\overrightarrow{BI}\right)\)
\(=2\left(2\overrightarrow{DB}+\overrightarrow{IC}+\overrightarrow{CJ}\right)=2\left(2\overrightarrow{DB}+\overrightarrow{IJ}\right)=2\left(2\overrightarrow{DB}+\frac{1}{2}\overrightarrow{BD}\right)=3\overrightarrow{DB}\)c/
\(\overrightarrow{AK}=\overrightarrow{AB}+\overrightarrow{BK}=\overrightarrow{AB}+\frac{1}{6}\overrightarrow{BD}=\overrightarrow{AB}+\frac{1}{6}\left(\overrightarrow{BA}+\overrightarrow{BC}\right)=\frac{5}{6}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{BC}\)
\(\overrightarrow{AH}=\overrightarrow{AB}+\overrightarrow{BH}=\overrightarrow{AB}+\frac{1}{5}\overrightarrow{BC}=\frac{6}{5}\left(\frac{5}{6}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{BC}\right)=\frac{6}{5}\overrightarrow{AK}\)
\(\Rightarrow A;K;H\) thẳng hàng
a) Giả sử \(m\overrightarrow{a}=m\overrightarrow{b}\)
\(\Leftrightarrow m\overrightarrow{a}-m\overrightarrow{b}=\overrightarrow{0}\)
\(\Leftrightarrow m\left(\overrightarrow{a}-\overrightarrow{b}\right)=\overrightarrow{0}\)
\(\Leftrightarrow m.\overrightarrow{0}=\overrightarrow{0}\) (do \(\overrightarrow{a}=\overrightarrow{b}\) )
\(\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\) (luôn đúng).
Vậy điều giả sử đúng.
Ta chứng minh được:
Nếu \(\overrightarrow{a}=\overrightarrow{b}\) thì \(m\overrightarrow{a}=m\overrightarrow{b}\).
b) Có: \(m\overrightarrow{a}=m\overrightarrow{b}\)\(\Leftrightarrow m\overrightarrow{a}-m\overrightarrow{b}=\overrightarrow{0}\)
\(\Leftrightarrow m\left(\overrightarrow{a}-\overrightarrow{b}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{0}\) (do \(m\ne0\) )
\(\Leftrightarrow\overrightarrow{a}=\overrightarrow{b}\) (đpcm).
c) Có \(m\overrightarrow{a}=n\overrightarrow{a}\Leftrightarrow m\overrightarrow{a}-n\overrightarrow{a}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{a}\left(m-n\right)=\overrightarrow{0}\)
\(\Leftrightarrow m-n=0\) ( do \(\overrightarrow{a}\ne0\) )
\(\Leftrightarrow m=n\) (đpcm).
Ta chứng minh bằng quy nạp:
- Với n = 1 luôn đúng vì \(\overrightarrow{a}\) có cùng độ dài và hướng với véc tơ \(1.\overrightarrow{a}\) nên \(\overrightarrow{a}=1.\overrightarrow{a}\).
- Giả sử điều phải chứng minh đúng với \(n=k\). Nghĩa là:
\(\overrightarrow{a}+\overrightarrow{a}+........+\overrightarrow{a}=k\overrightarrow{a}\). (có \(k\) véc tơ \(\overrightarrow{a}\))
- Ta sẽ chứng minh nó đúng với \(n=k+1\). Nghĩa là:
\(\overrightarrow{a}+\overrightarrow{a}+........+\overrightarrow{a}+\overrightarrow{a}=\left(k+1\right)\overrightarrow{a}\).
Thật vậy, ta có tổng k + 1 véc tơ \(\overrightarrow{a}\):
\(\overrightarrow{a}+\overrightarrow{a}+........+\overrightarrow{a}+\overrightarrow{a}=\left(\overrightarrow{a}+\overrightarrow{a}+...+\overrightarrow{a}\right)+\overrightarrow{a}\)
\(=k\overrightarrow{a}+\overrightarrow{a}\) (theo giả thiết quy nạp)
\(=\left(k+1\right)\overrightarrow{a}\) (theo tính chất phân phối với phép cộng các số).
Vậy \(\overrightarrow{a}+\overrightarrow{a}+........+\overrightarrow{a}+\overrightarrow{a}=\left(k+1\right)\overrightarrow{a}\).
Suy ra điều phải chứng minh đúng với n = k + 1.
Theo nguyên lý quy nạp toán học điều trên đúng với n.