Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn tham khảo câu hỏi này nhé:
https://olm.vn/hoi-dap/detail/98207379947.html
k nha
^-^
Xét 1001 số \(3;3^2;3^3;.....;3^{1001}\) thì tồn tại 2 số khi chia cho 1000 có cùng số dư.
Giả sử 2 số \(3^m;3^n\left(1\le n< m\le1001\right)\) khi chia cho 1000 có cùng số dư.
Khi đó \(3^m-3^n⋮1000\)
\(\Rightarrow3^n\left(3^{m-n}-1\right)⋮1000\)
Lại có \(\left(3^n;1000\right)=1\Rightarrow3^{m-n}-1⋮1000\)
\(\Rightarrow3^{m-n}=\overline{....001}\)
\(\Rightarrowđpcm\)
#)Góp ý :
Bạn tham khảo nhé :
Câu hỏi của tth - Toán lớp 7 - Học toán với OnlineMath
Link : https://olm.vn/hoi-dap/detail/218057796597.html
Áp dụng nguyên lý Di-rich-le, ta có:
Gọi các số: 3, 32, ..., 31001. Theo nguyên lý Di-rich-le luôn luôn tồn tại 2 số trong 1001 số trên khi chia cho 1000 có cùng số dư.
Gỉa sử hai số: 3m, 3n trong đó \(1\le n\le m\le1001\)
\(\Rightarrow3^m-3^n⋮1000\)
\(\Rightarrow3^n.\left(3^{m-n}-1\right)⋮1000\)
Vì 3n không chia hết cho 1000 nên => \(3^{m-n}-1⋮1000\)
\(\Rightarrow3^{m-n}-1=100k\left(k\in N\cdot\right)\)
\(\Rightarrow3^{m-n}=1000k+1\)
=> 3m - n có tận cùng là 001
=> ĐPCM
Áp dụng nguyên lý Di-rich-le, ta có:
Gọi các số: 3, 32, ..., 31001. Theo nguyên lý Di-rich-le luôn luôn tồn tại 2 số trong 1001 số trên khi chia cho 1000 có cùng số dư.
Gỉa sử hai số: 3m, 3n
trong đó 1 ≤ n ≤ m ≤ 1001
⇒3m − 3n⋮1000
⇒3n. 3m−n − 1 ⋮1000
Vì 3n không chia hết cho 1000 nên => 3
m−n − 1⋮1000
⇒3m−n − 1 = 100k k ∈ N ·
⇒3m−n = 1000k + 1
=> 3m - n
có tận cùng là 001
=> ĐPCM
p/s : kham khảo