Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Ta có :}\)
\(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}\)
\(=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)
\(=\left(x^{4n}-x^{2n}+1\right)\left(x^{4n}+x^{2n}+1\right)\)
\(\text{Ta lại có :}\)
\(x^{4n}+x^{2n}+1=x^{4n}+2x^{2n}+1-x^{2n}\)
\(=\left(x^{2n}+1\right)^2-\left(x^n\right)^2=\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)
\(\Rightarrow x^{8n}+x^{4n}+1=\left(x^{4n}-x^{2n}+1\right)\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)
\(\Rightarrow x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\)
bt trên sẽ là (a4n)2 + 3 . a4n - 4 = (a4n)2 + 4. a4n - a4n -4 = ( a4n + 4)(a4n -1)
mặt khác vì a là số tự nhiên , a không chia hết cho 5
=> a4n = (a2n)2 là số chính phương chia 5 dư 1 hoặc 4 (vì scp chia 5 dư 0,1,4 - bạn có thể chứng minh = cách xét 1 số x nào đó có số dư cho 5 là 0,1,2,3,4 , đăt dạng của nó (VD như 5k+1 chẳng hạn ) rồi bp lên đc scp của nó để tìm số dư của scp đó cho 5 theo cách tổng quát nhất)
nếu a4n chia 5 dư 1 => a4n -1 chia hết cho 5 => bt chia hết cho 5
nếu a4n chia 5 dư 4 => a4n -4 chia hết cho 5 => bt chia hết cho 5
Vậy bt trên chia hết cho 5
Thiếu 1 phương trình :
\(4x^2-4\left(2n+1\right)x+4n^2+96mnp+1=0\)
Lời giải:
Với $p$ là số nguyên tố không chia hết cho $5$ thì $(p,5)=1$
Áp dụng định lý Fermat nhỏ ta có:
\(p^{5-1}\equiv 1\pmod 5\)
\(\Leftrightarrow p^4\equiv 1\pmod 5\)
\(\Rightarrow \left\{\begin{matrix} p^{4n}\equiv 1^n\equiv 1\pmod 5\\ p^{8n}\equiv 1^{2n}\equiv 1\pmod 5\end{matrix}\right.\)
\(\Rightarrow A=p^{8n}+23.p^{4n}+16\equiv 1+23.1+16\pmod 5\)
\(\Leftrightarrow A\equiv 40\equiv 0\pmod 5\)
Vậy $A$ chia hết cho $5$
\(x^{8n}+x^{4n}+1=\left(x^{4n}\right)^2+2x^{4n}+1-\left(x^{2n}\right)^2\)
=\(\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2=\left(x^{4n}-x^{2n}+1\right)\left(x^{4n}+x^{2n}+1\right)\)
phân tích như vậy tương tự với \(x^{4n}+x^{2n}+1=\left(x^{2n}+x^n+1\right)\left(x^{2n}-x^n+1\right)\)
Cái đó chia hết cho x2n+xn+1 => x8n+x4n+1 chia hết cho .................
mhink thấy tên gì kệ nó làm ............