K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

\(\sqrt{4}=2\)

Mà 2 thuộc tập hợp Z . Tất cả số nằm trong N , Z và một số phân số khác đều thuộc Q

=> 2 thuộc Q

=> 2 là số hữu tỉ ( vì Q là tập hợp số hữu tỉ ) 

6 tháng 11 2017

Ta có: \(\sqrt{4}\)=\(\sqrt{2^2}\)=2

Do đó: 2 \(\in\)Q nên \(\sqrt{4}\) là 1 số hữu tỉ

25 tháng 4 2019

Ta có:

\(P\left(1\right)=a+b+c\)

\(P\left(4\right)=16a+4b+c\)

\(P\left(9\right)=81a+9b+c\)

Vì P(1); P(4) là số hữu tỉ nên \(P\left(4\right)-P\left(1\right)=15a+3b=3\left(5a+b\right)\)là số hữu tỉ

=> \(5a+b\)là số hữu tỉ (1)

Vì P(1); P(9) là số hữu tỉ nên \(P\left(9\right)-P\left(1\right)=80a+8b=8\left(10a+b\right)\)là số hữu tỉ

=> \(10a+b\)là số hữu tỉ (2)

Từ (1), (2) => \(\left(10a+b\right)-\left(5a+b\right)=10a+b-5a-b=5a\)là số hữu tỉ

=> a là số hữu tỉ

Từ (1)=> b là số hữu tỉ

=> c là số hữu tỉ

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lời giải:
$x$ là số hữu tỉ khác $0$. Đặt $x=\frac{a}{b}$ với $a,b$ là số nguyên, $b\neq 0$.

Giả sử $x+y$ là số hữu tỉ. Đặt $x+y=\frac{c}{d}$ với $c,d\in\mathbb{Z}, d\neq 0$

$\Rightarrow y=\frac{c}{d}-x=\frac{c}{d}-\frac{a}{b}=\frac{bc-ad}{bd}$ là số hữu tỉ (do $bc-ad, bd\in\mathbb{Z}, bd\neq 0$)

Điều này vô lý do $y$ là số vô tỉ.

$\Rightarrow$ điều giả sử là sai. Tức là $x+y$ vô tỉ.

Hoàn toàn tương tự, $x-y$ cũng là số vô tỉ.

-------------------------------

Chứng minh $xy$ vô tỉ.

Giả sử $xy$ hữu tỉ. Đặt $xy=\frac{c}{d}$ với $c,d$ nguyên và $d\neq 0$

$\Rightarrow y=\frac{c}{d}:x=\frac{c}{d}:\frac{a}{b}=\frac{bc}{ad}\in\mathbb{Q}$

Điều này vô lý do $y\not\in Q$

$\Rightarrow$ điều giả sử là sai $\Rightarrow xy$ vô tỉ.

-------------------------------

CM $\frac{x}{y}$ vô tỉ.

Giả sử $\frac{x}{y}$ hữu tỉ. Đặt $\frac{x}{y}=\frac{c}{d}$ với $c,d$ nguyên, $d\neq 0$

$\Rightarrow y=x:\frac{c}{d}=\frac{a}{b}: \frac{c}{d}=\frac{ad}{bc}\in\mathbb{Q}$

Điều này vô lý do $y\not\in Q$

$\Rightarrow$ điều giả sử là sai. Tức là $\frac{x}{y}$ vô tỉ.

22 tháng 8 2017

Xét số hữu tỉ a/b, có thể coi b > 0.

Nếu a, b cùng dấu thì a > 0 và b > 0.

Suy ra (a/b) > (0/b) = 0 tức là a/b dương.

12 tháng 10 2017

iả sử √22 là số hữu tỉ.

Vậy có thể viết √22 dưới dạng abab với a,bϵZ,b≠0a,bϵZ,b≠0 và (a;b)=1(a;b)=1 (1)

⇒a2b2=2⇒a2=2b2⇒a2b2=2⇒a2=2b2

⇒a⇒a chẵn . Đặt a=2ka=2k (kϵZkϵZ)

⇒4k2b2=2⇒4k2=2b2⇒b2=2k2⇒4k2b2=2⇒4k2=2b2⇒b2=2k2

⇒b⇒b chẵn . 

Vậy (a;b)≠1(a;b)≠1 trái với (1)

Vậy √22 là số vô tỷ.

12 tháng 10 2017

Xin phép sửa lại đề: Chứng minh rằng \(\sqrt{2}\)là số vô tỉ.

Giải:

Giả sử \(\sqrt{2}\)là số vô tỉ.

Khi đó ta có: \(\sqrt{2}=\frac{m}{n}\) \(m;n=1\)

\(\Rightarrow2=\frac{m^2}{n^2}\)

\(\Rightarrow2n^2=m^2\)

\(\Rightarrow m⋮n\) \(2;1=1\)

\(\Rightarrow\)Điều giả sử vô lý

\(\Rightarrow\sqrt{2}\)là số vô tỉ