Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{n+1}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{n}{n+1}\)
\(A=\frac{1}{n+1}\)
1)
42n+1+3n+2= (42)n.4 +3n.32
= 16n.4+3n.9
=13n.4+3n.4+3n.9
=13n.4+3n.(4+9)
= 13n.4+3n.13 = 13.(13n-1+3n) chia het cho 13
=> 42n+1+3n+2 chia hết cho 13
2)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{n+1}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{n}{n+1}\)
\(=\frac{1}{n+1}\)
\(A=n\left(n+1\right)\left(2n+1\right)\)
Nhận thấy \(n\left(n+1\right)\)là tích của 2 số nguyên liên tiếp nên \(n\left(n+1\right)\)chia hết cho 2
=> A chia hết cho 2
Nếu \(n=3k\)thì A \(⋮\)\(3\)
Nếu \(n=3k+1\)thì: \(2n+1=2\left(3k+1\right)+1=6k+3\)\(⋮\)\(3\)=> \(A\)\(⋮\)\(3\)
Nếu \(n=3k+2\)thì \(n+1=3k+2+1=3k+3\)\(⋮\)\(3\)=> \(A\)\(⋮\)\(3\)
vậy với mọi n nguyên ta đều có A chia hết cho 3
mà \(\left(2;3\right)=1\)
nên A chia hết cho 6
Ta có:
\(1.3.5.7.9...\left(2n-1\right)=\frac{\left[1.3.5.7.9....\left(2n-1\right)\right].\left[2.4.6.8...2n\right]}{2.4.6.8....2n}=\frac{1.2.3.4.5.6....2n}{\left(2.1\right).\left(2.2\right).\left(2.3\right)\left(2.4\right)....\left(2.n\right)}\)
=> \(1.3.5.7.9...\left(2n-1\right)=\frac{1.2.3.4.5.6....2n}{\left(2.2.2.....2\right).\left(1.2.3.4.....n\right)}=\frac{\left(1.2.3.4.....n\right)\left[\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n\right]}{2^n.\left(1.2.3.4....n\right)}\)
=> \(1.3.5.7.9...\left(2n-1\right)=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}{2^n}\)
=> \(\frac{1.3.5.7.9...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}{2^n\left[\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n\right]}=\frac{1}{2^n}\)(đpcm)
Câu 1:
\(\Leftrightarrow6x-18-8x-4-2x+8=4-3\left(2x+1\right)+5\left(2x-1\right)\)
=>-4x-14=4-6x-3+10x-5
=>-4x-14=4x-4
=>-8x=10
hay x=-5/4
a) Nhân cả tử và mẫu với 2 . 4 . 6 ... 40 ta được :
\(\frac{1.3.5...39}{21.22.23...40}=\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}\)
\(=\frac{1.2.3...39.40}{1.2.3...40.2^{20}}=\frac{1}{2^{20}}\)
b) Nhân cả tử và mẫu với 2 . 4 . 6 ... 2n ta được :
\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3....2n\right)}=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{\left(n+1\right)\left(n+2\right)...\left(2n\right).\left(2.4.6...2n\right)}\)
\(=\frac{1.2.3...\left(2n-1\right).2n}{1.2.3...2n.2^n}=\frac{1}{2^n}\)