Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{17.18}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{17}-\frac{1}{18}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{17}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{18}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{18}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{18}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{18}-1-\frac{1}{2}-\frac{1}{3}-.....-\frac{1}{9}\)
\(=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+....+\frac{1}{18}\)
Ta thấy : \(\frac{1}{10}>\frac{1}{19};\frac{1}{11}>\frac{1}{19};\frac{1}{12}>\frac{1}{19};....;\frac{1}{18}>\frac{1}{19}\)
\(\Rightarrow A=\frac{1}{10}+\frac{1}{11}+...+\frac{1}{18}>\frac{1}{19}+\frac{1}{19}+...+\frac{1}{19}\)(có 9 số \(\frac{1}{19}\) )
\(\Rightarrow A>9.\frac{1}{19}=\frac{9}{19}\)(đpcm)
A = 1/5×5 + 1/6×6 + ... + 1/100×100
A < 1/4×5 + 1/5×6 + ... + 1/99×100
A < 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/99 - 1/100
A < 1/4 - 1/100 < 1/4 (1)
A = 1/5×5 + 1/6×6 + ... + 1/100×100
A > 1/5×6 + 1/6×7 + ... + 1/100×101
A > 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/100 - 1/101
A > 1/5 - 1/101 > 1/5 - 1/30
A > 6/30 - 1/30 = 1/6 (2)
Từ (1) và (2) => 1/6 < A < 1/4 ( đpcm)
a, \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)
\(=\frac{1}{5}-\frac{1}{25}\)
\(=\frac{4}{25}\)
b, \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
Gọi biểu thức trên là A
\(A=\)\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{51.56}\)
\(5A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{51.56}\)
\(5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{51}-\frac{1}{56}\)
\(5A=1-\frac{1}{56}=\frac{55}{56}\)
\(A=\frac{55}{56}\div5=\frac{55}{56}.\frac{1}{5}=\frac{11}{56}\)
\(=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)
\(=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5.\left(1-\frac{1}{31}\right)\)
\(=5.\frac{30}{31}\)
\(=\frac{6}{31}\)
\(=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+\frac{5}{26.31}\right)\)
\(=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5.\left(1-\frac{1}{31}\right)=\frac{150}{31}\)
Ta có :
\(S=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)
\(S=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}\right)\)
\(S=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}\right)\)
\(S=5\left(1-\frac{1}{26}\right)\)
\(S=5.\frac{25}{26}\)
\(S=\frac{125}{26}\)
Vậy \(S=\frac{125}{26}\)
Chúc bạn học tốt ~
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
giải hộ mình nhé, mai mình nộp rồi
Ta có : \(\frac{5.5}{1.6}+\frac{5.5}{6.11}+\frac{5.5}{11.16}+\frac{5.5}{16.21}\)
\(=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}\right)\)
\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}\right)\)
\(=5\left(1-\frac{1}{21}\right)\)
\(=5.\frac{20}{21}=\frac{100}{21}\)