Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{2n-1}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2n}\right)=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2n-1}+\frac{1}{2n}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2n}\right)=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n-1}+\frac{1}{2n}-\frac{1}{1}-\frac{1}{2}-....-\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n+2}+....+\frac{1}{2n}\left(\text{đpcm}\right)\)
Câu hỏi của Phương Uyên - Toán lớp 7 | Học trực tuyến
mình ko có thời gian
bạn tự xem nhé
a. Ta có: \(\dfrac{1}{21}>\dfrac{1}{40};\dfrac{1}{22}>\dfrac{1}{40};...;\dfrac{1}{40}=\dfrac{1}{40}\)
\(\Rightarrow\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{40}>\dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}\)(20 số hạng vì A có 20 số hạng)
\(\Rightarrow A>\dfrac{1}{40}.20\)
\(\Rightarrow A>\dfrac{1}{2}\left(1\right)\)
Ta lại có: \(\dfrac{1}{21}< \dfrac{1}{20};\dfrac{1}{22}< \dfrac{1}{20};...;\dfrac{1}{40}< \dfrac{1}{20}\)
\(\Rightarrow\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{40}< \dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\) (20 số hạng)
\(\Rightarrow A< \dfrac{1}{20}.20\)
\(\Rightarrow A< 1\left(2\right)\)
Từ \(\left(1\right)và\left(2\right)\) ta suy ra \(\dfrac{1}{2}< A< 1\)
b.Ta có: Đặt \(A=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
\(B=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)\(\Rightarrow B=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(\Rightarrow B=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(\Rightarrow B=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)
\(\Rightarrow B=\dfrac{1}{25}+\dfrac{1}{26}+...+\dfrac{1}{50}=A\)
\(\Rightarrow B=A\left(đpcm\right)\)
\(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
\(P=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+1\)
\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)
\(P=50\left(\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)
\(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)
Ta có: \(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
\(P=\left(1+\dfrac{1}{49}\right)+\left(1+\dfrac{2}{48}\right)+\left(1+\dfrac{3}{47}\right)+...+\left(1+\dfrac{48}{2}\right)+1\)
\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)
\(P=50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(\Rightarrow\)\(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)}\)\(=\dfrac{1}{50}\)
Ta có:
P= \(\dfrac{1}{49}+\dfrac{2}{48}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
P= \(\dfrac{1}{49}+\dfrac{2}{48}+...+\dfrac{48}{2}+\left(1+1+...+1\right)\)(có 49 chữ số 1)
P= \(\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+...+\left(\dfrac{48}{2}+1\right)+1\)
P= \(\dfrac{50}{49}+\dfrac{50}{48}+...+\dfrac{50}{2}+\dfrac{50}{50}\)
P= \(50.\left(\dfrac{1}{50}+\dfrac{1}{49}+...+\dfrac{1}{2}\right)\)
⇒ \(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}}{50.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)}\)
⇒ \(\dfrac{S}{P}=\dfrac{1}{50}\)
Vậy \(\dfrac{S}{P}=\dfrac{1}{50}\)
P = 1/49+2/48+3/47+...+48/2+49/1
Cộng 1 váo mỗi p/s trong 48 p/s đầu , trừ p/s cuối đi 48 ta được
P=(1/49+1)+(2/48+1)+...+(48/2+1)+1
P= 50/49+50/48+....+50/2+50/50
Đưa ps cuối lên đầu
P=50/50+50/49+50/48+...+50/2
=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)
=50S
=> S/P=1/50
Ta có : \(\dfrac{1}{4}\)= \(\dfrac{1}{2.2}\)> \(\dfrac{1}{2.3}\)
\(\dfrac{1}{9}\)= \(\dfrac{1}{3.3}\)> \(\dfrac{1}{3.4}\)
\(\dfrac{1}{16}\)=\(\dfrac{1}{4.4}\)> \(\dfrac{1}{4.5}\)
.......
\(\dfrac{1}{9801}\)= \(\dfrac{1}{99.99}\)> \(\dfrac{1}{99.100}\)
\(\dfrac{1}{10000}\)= \(\dfrac{1}{100.100}\)> \(\dfrac{1}{100.101}\)
\(\Rightarrow\) \(\dfrac{1}{4}\)+ \(\dfrac{1}{9}\)+ \(\dfrac{1}{16}\)+ ..... + \(\dfrac{1}{9801}\)+ \(\dfrac{1}{10000}\)> \(\dfrac{1}{2.3}\)+ \(\dfrac{1}{3.4}\)+ \(\dfrac{1}{4.5}\)+...+ \(\dfrac{1}{99.100}\)+\(\dfrac{1}{100.101}\)
= \(\dfrac{3-2}{2.3}\)+ \(\dfrac{4-3}{3.4}\)+ \(\dfrac{5-4}{4.5}\) +...+ \(\dfrac{100-99}{99.100}\)+ \(\dfrac{101-100}{100.101}\)
= \(\dfrac{3}{2.3}\)- \(\dfrac{2}{2.3}\) + \(\dfrac{4}{3.4}\)-\(\dfrac{3}{3.4}\)+ \(\dfrac{5}{4.5}\)-\(\dfrac{4}{4.5}\)+...+ \(\dfrac{100}{99.100}\)- \(\dfrac{99}{99.100}\)+ \(\dfrac{101}{100.101}\)-\(\dfrac{100}{100.101}\)
= \(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+....+ \(\dfrac{1}{99}\)-\(\dfrac{1}{100}\)+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\)
= \(\dfrac{1}{2}\)- \(\dfrac{1}{101}\) ; Mà \(\dfrac{1}{2}\)- \(\dfrac{1}{101}\)= \(\dfrac{99}{202}\)< \(\dfrac{1}{2}\)
\(\Rightarrow\) \(\dfrac{1}{2}\)< \(\dfrac{1}{4}\)+ \(\dfrac{1}{9}\)+ \(\dfrac{1}{16}\)+...+ \(\dfrac{1}{9801}\)+ \(\dfrac{1}{10000}\) (1)
Ta có :
Vế phải =1 - 1/2 + 1/3 - 1/4 + ... + 1/49 - 1/50
= (1+ 1/3 + 1/5 + ... + 1/49) - (1/2 + 1/4 + ... +1/50)
<=> (1 + 1/2 + 1/3 + 1/4 + ... + 1/49+1/50)- 2(1/2 +1/4 +...+1/50)
=(1+1/2 +1/3 +1/4...+ 1/49+1/50) - (1+1/2 +...+1/25)
=1/26 + 1/27 +1/28 +...+1/50 (đpcm)