K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

sửa đề câu 1 :

\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\)

sửa đề câu 2

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

20 tháng 6 2019

khi cộng cac số có tử bé hơn mẫu thì tổng sẽ <1 nha 

4 tháng 12 2019

Nhanh lên nhé

4 tháng 12 2019

Giups mnihf đi

30 tháng 10 2020

VIẾT SAI ĐỀ BÀI NHÉ

50<A<100

8 tháng 8 2020

Giúp mình nha. Bài cuối cùng của đề toán dài 36 bài của mình đó

8 tháng 8 2020

\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)

Nên từ đây => \(A< 1\)     (ĐPCM)

8 tháng 3 2017

đầu bài sai bạn nhá, lớn hơn 1/100. Ta đi cm tổng những phân số có dấu âm > 1-1/100

Có: \(2^2>1.2 \Rightarrow\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)

mấy cái kia tương tự suy ra tổng các p/s trong ngoặc < 1-1/100
=> vế trái>1-(1-1/100)=1/100

8 tháng 3 2017

cam on ban

11 tháng 2 2018

khó thể xem trên mạng

9 tháng 3 2018

Gọi \(A=\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

\(49A=1-\frac{1}{7^2}+\frac{1}{7^4}-...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)

\(49A+A=\left(1-\frac{1}{7^2}+\frac{1}{7^4}-...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\right)+\left(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\right)\)

\(50A=1-\frac{1}{7^{100}}\)

\(A=\frac{1-\frac{1}{7^{100}}}{50}< \frac{1}{50}\) ( cùng mẫu, tử bé hơn nên bé hơn ) 

Vậy \(A< \frac{1}{50}\)

Chúc bạn học tốt ~

9 tháng 3 2018

Help me!