\(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}⋮120\) với  \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

\(=3^x\left(3+3^2+3^3+...+3^{100}\right)\)

\(=3^x\left[\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\right]\)

\(=3^x.\left[120+3^4.\left(3+3^2+3^3+3^4\right)+...+3^{96}\left(3+3^2+3^3+3^4\right)\right]\)

\(=3^x.\left[120+3^4.120+...+3^{96}.120\right]⋮120\)

18 tháng 3 2018

biểu thức trong ngoặc chia hết cho 3 (hiển nhiên)

ta có P = 3x (3 + 32 + 33 +...+ 3100)

=3x [3(1+3) + 33(1+3) + 35(1+3) + ... + 399(1+3)]

=4.3x(3 + 33 + 35 + ... + 399)

=4.3x [3(1+9) + 35(1+9) + 37(1+9) +... + 397(1+9)]

=40.3x(3 + 35 + 37 + ... + 397) ⋮ 40

mà [3;40] = 120 ⇒ P⋮120 (ĐPCM)

13 tháng 5 2019

Đặt A = 3x + 1 + 3x + 2 + 3x + 3 + ... + 3x + 100

=> A = ( 3x + 1 + 3x + 2 + 3x + 3 + 3x + 4 ) + ( 3x + 5 + 3x + 6 + 3x + 7 + 3x + 8 ) + ... + ( 3x + 97 + 3x + 98 + 3x + 99 + 3100 )

=> A = 3. ( 3 + 32 + 33 + 34 ) + 3x + 5 . ( 3 + 32 + 3+ 3) + ... + 3x + 97 . ( 3 + 32 + 33 + 34 )

=> A = 3. 120 + 3x + 5 . 120 + ... + 3x + 97 . 120

=> A = ( 3x + 3x + 5 + ... + 3x + 97 ) . 120

Vì \(120⋮120\)nên \(\left(3^x+3^{x+5}+...+3^{x+97}\right).120⋮120\)hay \(A⋮120\)

~ Hok tốt ~

13 tháng 5 2019

\(S=3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}=3^x\left(3+3^2+3^3+..3^{100}\right).Do..đó.\) 

Ta chứng minh A = 3 + 32 + 33 + 34 + ..... + 399 + 3100  chia hết cho 120 . Tổng A có 100 số hạng.

- Chia tổng A thành 25 nhóm , mooic nhóm gồm 4 số hạng liên tiếp, kể từ số hạng đầu, mỗi nhóm như vậy có tổng chia hết cho 120 :

A = (3 + 32 + 33 + 34) + (x5 + x6 +  x7 +  x8 ) + ... + (x97 + x98 + x99 + x100 ) = x ( 1 + x + x2 + x3 ) + x2 ( 1 + x + x2 + x3 ) + ..... + x97 ( 1 + x + x2 + x3 ) = 40.(x + x2 + x3 + ... + x97 )  Chia hết cho 40 . Dễ thấy A chia hết cho 3, Mà 3 và 40 nguyên tố cùng nhau nên A chia hết cho  3x40 = 120

Do đó S = 3x.A chia hết cho 120 với mọi giá trị x là số tự nhiên.

18 tháng 3 2018

P=(3x+1)+(3x+2)+(3x+3)+...+(3x+100)=3x*3+3x*32+3x*33+...+3x*3100=3x*(3+32+33+34+...+3100)

P=3x[(3+32+33+34)+(35+36+37+38)+...+(397+398+399+3100)]

P=3x[3(1+3+32+33)+35(1+3+32+33)+...+397(1+3+32+33)]

Vì 1+3+32+33=120 nên trong [ ] chia hết cho 120 => P chia hết cho 120 (vì 1 thừa số của tích chia hết cho 120 thì tích đó chia hết cho 120)

=>đpcm

1 tháng 1 2017

Gọi tổng \(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\)là A, ta có :

\(A=3^x\times3+3^x\times3^2+3^x\times3^3+...+3^x\times3^{100}\)

\(=3^x\left[3^0\left(3+3^2+3^3+3^4\right)\right]+...+3^x\left[3^{96}\left(3+3^2+3^3+3^4\right)\right]\)

\(=3^x\left[3^0\left(3+9+27+81\right)\right]+...+3^x\left[3^{96}\left(3+9+27+81\right)\right]\)

\(=3^x\left(3^0\times120\right)+...+3^x\left(3^{96}\times120\right)\)

\(=3^x\times3^0\times120+...+3^x\times3^{96}\times120\)

\(=120\left[3^x\left(3^0+...+3^{96}\right)\right]⋮120\)

Vậy A chia hết cho 120

4 tháng 3 2019

=3^x(3+3^2+3^3+3^4)+(3^x+4)(3+3^2+3^3+3^4)+...

=3^x.120+(3^x+4).120+...

=120(3^x+3^x+4...) chia hết cho 120

=>x^3+1...(đề bài) chia hết cho 120

(Một số dấu ngoặc mk thêm để cho dễ nhìn nha)

Nhớ k cho mk đó!

Bài 1: Tìm x, y, z biết: a. \(8x=3y\); \(5y=6z\) và \(2x+y-z=-34\)b. \(6^{x+1}-200\cdot6^{x-1}=360\) \(\left(x\in N,x\ge2\right)\)c. \(3^x+4^x=5^x\left(x\in N\right)\)d. \(\frac{x-5}{7}=\frac{2y+3}{5}=z+19\) và \(x+y=z\)e. \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}\) và \(x^6\cdot y^6=64\)g. \(\left(x^3-5\right)\left(x^3-10\right)\left(x^3-30\right)< 0\left(x\in Z\right)\)Bài 2: a. Chứng minh...
Đọc tiếp

Bài 1: Tìm x, y, z biết: 

a. \(8x=3y\)\(5y=6z\) và \(2x+y-z=-34\)

b. \(6^{x+1}-200\cdot6^{x-1}=360\) \(\left(x\in N,x\ge2\right)\)

c. \(3^x+4^x=5^x\left(x\in N\right)\)

d. \(\frac{x-5}{7}=\frac{2y+3}{5}=z+19\) và \(x+y=z\)

e. \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}\) và \(x^6\cdot y^6=64\)

g. \(\left(x^3-5\right)\left(x^3-10\right)\left(x^3-30\right)< 0\left(x\in Z\right)\)

Bài 2: 

a. Chứng minh rằng: \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2011^2}>\frac{1}{2011}\)

b. Cho \(\left(5a_1+7b_1\right)^{2010}+\left(5a_2+7b_2\right)^{2012}+\left(5a_3+7b_3\right)^{2014}\le0\) và \(b_1,b_2,b_3\ne0,b_1+b_2+b_3\ne0\) . Chứng minh rằng: \(\frac{a_1+a_2+a_3}{b_1+b_2+b_3}=-1\frac{2}{5}\)

Bài 3: 

a. Cho \(\frac{x}{y}=\frac{z}{t}\) . Chứng minh rằng \(\frac{x^2-y^2}{z^2-t^2}=\left(\frac{y-x}{t-z}\right)^2=\frac{xy}{zt}\)

b. Độ dài 3 đường cao của 1 tam giác tỉ lệ với 3; 5; 6. Tính độ dài 3 cạnh tương ứng của tam giác đó, biết rằng chu vi của tam giác là  42cm 

c. Chứng minh rằng \(2^{x+4}-3^x-3^{x+2}-2^x\) chia hết cho 30 với x la số tựu nhiên lớn hơn hoặc bằng 1

 

0