K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2017

Giải:

Ta có:

\(3^{4n+2}=9.9^{2n}=\) \(9.\left(17-8\right)^{2n}=17k+9.64^n\)

\(2.4^{3n+1}=8.64^n\)

\(\Rightarrow3^{4n+2}+2.4^{3n+1}=17k+17.64^n\)

\(=17\left(k+64^n\right)⋮17\forall x\in N\) (Đpcm)

15 tháng 6 2017

a) Giải:

Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:

\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng

Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:

\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)

Xét \(B_{k+1}-B_k\)

\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)

\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)

\(=10.11^{k+2}+143.12^{2k+1}\)

\(=10.121.11^k+143.12.144^k\)

\(\equiv\) \(10.121.11^k+10.12.11^k\)

\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)

Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)

Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm

26 tháng 6 2017

Với n = 0

\(\Rightarrow3.5^{2.0+1}+2^{3.0+1}=3.5+2=15+2=17⋮17\Rightarrow\)đúng với n = 0

Giả sử \(3.5^{2n+1}+2^{3n+1}\) đúng với n = k \(\in\) N*

\(\Rightarrow3.5^{2k+1}+2^{3k+1}⋮17\)

C/m : \(3.5^{2n+1}+2^{3n+1}\) đúng với n = k + 1 ( k \(\in\) N* )

Ta có :

\(3.5^{2n+1}+2^{3n+1}=3.5^{2\left(k+1\right)+1}+2^{3\left(k+1\right)+1}\)

\(=3.25.5^{2k+1}+8.3^{3k+1}=3.25.5^{2k+1}+25.2^{3k+1}-17.2^{3k+1}\)

\(=25\left(3.5^{2k+1}+2^{3k+1}\right)-17.2^{3k+1}\)

Vì : \(17.2^{3k+1}⋮17\) ; \(3.5^{2k+1}+2^{3k+1}⋮17\) theo phương pháp quy nạp

\(\Rightarrow3.5^{2\left(k+1\right)+1}+2^{3\left(k+1\right)+1}⋮17\)

Vậy ...

15 tháng 11 2017

Mọi người ơi trả lời hộ mình câu 3 nhé. cám ơn nhiều

21 tháng 4 2016

dễ mak 

chỉ cần nói cái dưới là u của cái trên

rồi tim ra 1 số chia hết cái dưới