Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:abcabc = abc . 100 + abc = abc . 1001
Mã 1001 chia hết cho các số tự nhiên: 7, 11, 91, 143
=> abc . 1001 chia hết cho 7,11,91,143
=> dcpcm
abcabc = abc000 + abc
= abc.1000 + abc.1
= abc.(1000 + 1)
= abc . 1001
= abc.7.11.13
Vì abcabc chia hết cho 7;11;13
<=> abcabc có ít nhất 3 ước là các thừa số nguyên tố
ta có:abcabc=abc.1001
mà 1001 chia hết cho 7;11;13(là số nguyên tố)
nên abc.1001 chia hết cho 7;11;13(là số nguyên tố)
suy ra số tự nhiên abcabc chia hết cho ít nhất 3 số nguyên tố
Ta có: abcabc = 1000abc + abc = 1001.abc
Vì 1001 = 7.11.13 (là tích của 3 số nguyên tố)
=> abcabc luôn chia hết cho 3 số nguyên tố là 7; 11 và 13
k mk nha!^-^
abcabc=abc*1001=abc*7*11*13
Vì 7;11;13 đều là 3 số nguyên tố nên số có dạng abcabc chia hết ít nhất cho 3 số nguyên tố
Ta có : abcabc = 1001 . abc = 7 . 11 . 13 . abc
Mà 7, 11, 13 là số nguyên tố => 7 . 11 . 13 .abc chia hết cho 3 số nguyên tố
Hay abcabc chia hết cho ít nhất 3 số nguyên tố
Ta có : abcabc = abc * 1001
=> abcabc = abc *7 *11*13
Mà 7;11;13 là số nguyên tố
=> abcabc chia hết cho ít nhất 3 số nguyên tố (đpcm)
a có:abcabc=abc.1001
mà 1001 chia hết cho 7;11;13(là số nguyên tố)
nên abc.1001 chia hết cho 7;11;13(là số nguyên tố)
suy ra số tự nhiên abcabc chia hết cho ít nhất 3 số nguyên tố
abcabc = abc . 1001
mà 1001 chia hết cho 7;11;13(là số nguyên)
nên abc.1001 chia hết cho 7;11;13(là số nguyên)
suy ra số tự nhiên abcabc chia hết cho ít nhất 3 số nguyên tố
Ta có:\(abcabc=abc\times1000+abc=abc\times1001\)
Mà \(1001\)chia hết cho các số nguyên tố như:\(7;11;91;143\)
\(\Rightarrow abc\times1001\)chia hết cho \(7;11;91;143\)
\(\Rightarrow abcabc\) chia hết cho ít nhất 3 số nguyên tố
Giải:
Ta có: \(\overline{abcabc}=\overline{abc}.1001\)
\(\Rightarrow\overline{abc}.1001⋮3\)
\(\Rightarrow\overline{abc}.1001⋮7\)
\(\Rightarrow\overline{abc}.1001⋮11\)
Mà 3, 7, 11 đều là số nguyên tố
Vậy \(\overline{abcabc}\) chia hết cho ít nhất 3 số nguyên tố
Ta có:
\(\overline{abcabc}=\overline{abc}.1001\)
Ta lại có:
\(\overline{abc}.1001=\overline{abc}.143.7⋮7\)
\(\overline{abc}.1001=\overline{abc}\cdot91\cdot11⋮11\)
\(\overline{abc}.1001=\overline{abc}\cdot77\cdot13⋮13\)
\(\Rightarrow\overline{abc}.1001⋮7;11;13\)
\(\Rightarrow\overline{abcabc}⋮7;11;13\)
Mà 7; 11 và 13 đều là số nguyên tố
=> \(\overline{abcabc}\) chia hết cho ít nhất 3 số nguyên tố (đpcm)