Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2009^{2008}-1}{2009^{2009}-1}<\frac{2009^{2008}-1+2010}{2009^{2009}-1+2010}=\frac{2009^{2008}+2009}{2009^{2009}+2009}\)
\(=\frac{2009.\left(2009^{2007}+1\right)}{2009.\left(2009^{2008}+1\right)}=\frac{2009^{2007}+1}{2009^{2008}+1}\)
Ta có :
\(2008^{100}+2008^{99}\)
\(=2008^{99}.\left(2008+1\right)\)
\(=2008^{99}.2009⋮2009\)
=> đpcm
Học tốt
Ta có : 22008 + 22009 + 22010
= 22008.(1 + 2 + 22)
= 22008.(1 + 2 + 4)
= 22008.7 \(⋮\)7
\(\Rightarrow\)22008 + 22009 + 22010 \(⋮\)10 (đpcm)
\(2^{2008}+2^{2009}+2^{2010}\)
\(=2^{2008}\left(1+2+2^2\right)\)
\(=2^{2008}.7⋮7\)
\(\Rightarrowđpcm\)
x=2009 => 2008 = x-1
Thay x=2009 và 2008 = x -1 vào A:
\(A=x^{2009}-\left(x-1\right)\cdot x^{2008}-\left(x-1\right)\cdot x^{2007}-...-\left(x-1\right)\cdot x+1\)
\(=x^{2009}-x^{2009}+x^{2008}-x^{2008}+.....-x^2+x+1\)
\(=x+1=2009+1=2010\)
A=1+3^1+3^2+...+3^2008
3A=3(1+3^1+3^2+...+3^2008)
3A=3*1+3*3^1+3*3^2+...+3*3^2008
3A=3+3^2+3^3+...+3^2009
3A-A=(3+3^2+3^3+...+3^2009)-(1+3^1+3^2+...+3^2008)
A=(3^2009-1):2
=>2A=(3^2009-1):2
<=>A=3^2009-1
vi 2 so lien tiep hon kem nhau 1 don vi
=>3^2009-1 va 3^2009 la 2 so lien tiep
=>2A va B la 2 so tu nhien lien tiep