Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 13 giao thừa = 1.2.3.4.5.6.7.8.9.10.11.12.13 chia hết cho 2
Có 11 giao thừa = 1.2.3.4.5.6.7.8.9.10.11 chia hết cho 2
suy ra 13 giao thừa - 11 giao thừa chia hết cho 2
xin các bạn k cho mình nhé
ta co:(11mu n+2)+(12 mu 2n+1)=121.(11mu n)+12.(144 mu n)
=(133-12).(11mu n)+12.(144 mu n)
=133.(11 mu n)+(144mu n -11 mu n).12
ta lai co:133.11 mu n chia het cho 133;(144 mu n)-(11 mu n) chia het cho (144-11)
=>(144 mu n)-(11 mu n)chia het cho 133
=>(11 mu n+2)+(12 mu 2n+1) chia het cho 133
9^2n=(9^2)^n=81^n
Vì 81^n-1 có tận cùng = 0 nên sẽ chia hết cho 2
9^2n=(9^2)^n=81^n
vì 81^n-1 có tận cùng bằng 0 nên sẽ chia hết cho 2
Vì n là số tự nhiên => n có dạng 2k ; 2k+1
Ta có:
Với n=2k
=> (n+5).(n+10) = (2k+5).(2k+10)=(2k+5).2.(k+5) chia hết cho 2
Với n=2k+1
=> (n+5).(n+10)=(2k+1+5).(2k+1+10)=(2k+6).(2k+11)=2.(k+3).(2k+11) chia hết cho 2
=> Với mọi số tự nhiên n thì (n+5).(n+10) luôn chia hết cho 2
1. Ta có dãy chia hết cho 2 : 2,4,6,...,100
Có số ' số chia hết cho 2 là :
(100-2):2+1=50 số
Ta có dãy chia hết cho 5 : 5,10,15,...,100
Có số ' số chia hết cho 5 là :
(100-5):5+1=20 số
2.
- n là số lẻ nên suy ra n+7 là chẵn
=> (n+4)(n+7) là số chẵn
- n là số chẵn suy ra n+4 là chẵn
=> (n+4)(n+7) là số chẵn
Vậy (n+4)(n+7) là số chẵn mà số chia hết cho 2 chỉ có số chẵn .
=> đpcm
đặt A=n(n+1)(n+5)
-nếu n chia hết cho 3=>A chia hết cho 3
-nếu có dạng 3k+1(k là STN)
=>n+5=3k+1+5=3(2k+3) chia hết cho 3
=>A chia hết cho 3
-nếu n có dạng 3k+2
=>n+1=3k+3=3(k+1) chia hết cho 3
=>A chia hết cho 3
Do n là số tự nhiên nên n = 3k hoặc n = 3k + 1 hoặc n = 3k + 2 (k thuộc N)
+ Với n = 3k thì n chia hết cho 3 => n.(n + 1).(n + 5) chia hết cho 3
+ Với n = 3k + 1 thì n + 5 = 3k + 6 = 3.(k + 2) chia hết cho 3 => n.(n + 1).(n + 5) chia hết cho 3
+ Với n = 3k + 2 thì n + 1 = 3k + 3 = 3.(k + 1) chia hết cho 3 => n.(n + 1).(n + 5) chia hết cho 3
Chứng tỏ tích n.(n + 1).(n + 5) là 1 số chia hết cho 3 với mọi số tự nhiên n
ta có n^2+n+6
=n^2+2.n.1/2+(1/2)^2+6-(1/2)^2
=(n+1/2)^2+23/4
ta có (n+1/2)^2 không chia hết cho 5(1)
23/4 không chia hết cho 5(2)
từ (1),(2) suy ra(n+1/2)^2+23/4 không chia hết cho 5
11.....1-10m=1111...11-n-9n =(111..1-n)-9n
111..1-n luôn luôn chia hết cho 9
=> 11...1-n-10n chia hết cho 9