Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ptr có: `\Delta'=b'^2-ac=[-(m-1)]^2-(m-3)`
`=m^2-2m+1-m+3`
`=m^2-3m+4`
`=m^2-2.m. 3/2+9/4+7/4`
`=(m-3/2)^2+7/4 > 0 AA m`
`=>\Delta' > 0 AA m`
Vậy ptr luôn có `2` `n_o` pb với mọi `m`
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
a= 1; b'= -(m+1); c=2m
1. Δ'>0
Theo Hệ thức Viet ta có: S=...= 2(m+1) và P= 2m
2. Để PT có 2 nghiệm cùng dương
\(\left\{{}\begin{matrix}S=2\left(m+1\right)>0\Leftrightarrow m>-1\\P=2m>0\Leftrightarrow m>0\end{matrix}\right.\Rightarrow m>0\)
Vậy với m>0 thì PT có 2 nghiệm cùng dương
3. Từ Viets:
S= 2(m+1)= 2m+2
P= 2m
Suy ra: S-P=2m+2-2m=2
hay x1+x2-x1.x2-2=0
\(x^2+mx+x+m=0\Leftrightarrow x\left(x+m\right)+\left(x+m\right)=0\Leftrightarrow\left(x+1\right)\left(x+m\right)=0\)
vì -1 là nghiệm âm của pt nên pt không thể có hai nghiệm dương...