Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. đặt tính
x4-2x3-2x2+ax+b / x2-3x+2
x4-3x3 x2+x+1
x3-2x2+ax+b
x3-3x2+2x
x2+(a-2)x+b
x2-3x+2
=> để f(x) chia hết cho g(x) =>\(\orbr{\orbr{\begin{cases}a-2=-3=>a=-1\\b=2\end{cases}}}\)
b. làm tương tự câu a
Gọi A(x), B(x) lần lượt là thương của f(x) khi chia cho x+1, x+2
Ta có: f(x) =A(x) (x+1) +4 => f(-1)=4
f(x) =B(x) (x+2)+3=> f(-2)=3
Gọi C(x) là thương của f(x) khi chia cho x^2+3x+2 có phần dư là ax+b
f(x)=C(x) (x^2+3x+2)+ax+b => f(-1)=C(x).0-a+b=4 => -a+b=4(1)
f(-2)=-2a+b=3 (2)
Từ (2) và (3) suy ra a=1, b=5 =>phần dư cần tìm x+5
a) \(x\left(x^2-2x\right)+\left(x-2x\right)=x^2\left(x-2\right)+x\left(x-2\right)=\left(x-2\right)\left(x^2+x\right)⋮x-2\forall x,y\in Z\)
b) \(x^3y^2-3yx^2+xy=xy\left(x^2y-3x+1\right)⋮xy\forall x,y\in Z\)
c) \(x^3y^2-3x^2y^3+xy^2=xy^2\left(x^2-3xy+1\right)⋮\left(x^2-3xy+1\right)\forall x,y\in Z\)
Để x4 + ax3 + b ⋮ x2 - 1 thì :
x4 + ax3 + b = ( x2 - 1 ) . Q
x4 + ax3 + b = ( x - 1 ) ( x + 1 ) . Q
Vì đẳng thức đúng với mọi x nên :
+) đặt x = 1 ta có :
14 + a . 13 + b = ( 1 - 1 ) ( 1 + 1 ) . Q
1 + a + b = 0
a + b = -1 (1)
+) đặt x = -1 ta có :
( -1 )4 + a . ( -1 )3 + b = ( -1 - 1 ) ( -1 + 1 ) . Q
1 - a + b = 0
-a + b = -1 (2)
Từ (1) và (2) ta giải hệ pt được a = 0 và b = -1
Vậy.......
Gọi K là trung điểm của AC
Ta có \(EF\le KF+KE\)
Mà KF là đg trung bình của tam giác ABC nên: \(KF=\frac{1}{2}AB\)
Tương tự: \(EK=\frac{1}{2}CD\)
Suy ra: \(EF\le\frac{AB+CD}{2}\)
Dấu bằng xảy ra khi E,F,K thằng hàng
Suy ra: AB//CD
Bạn cứ giải như bình thường thôi. Không việc gì phải đoán mò cả!
\(A=\frac{\left(x-1\right)^2}{x^2-4x+3}=\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x-3\right)}< 1\)
\(\Leftrightarrow\left(x-1\right)^2< \left(x-1\right)\left(x-3\right)\)
\(\Leftrightarrow2\left(x-1\right)< 0\)
\(\Leftrightarrow x< 1\)
Vậy tập nghiệm của bất phương trình là \(S=\left\{x< 3\right\}\)
\(ĐKXĐ:x\ne1;x\ne3\)
để \(A< 1\) thì \(\frac{\left(x-1\right)^2}{x^2-4x+3}< 1\Leftrightarrow\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x-3\right)}-1< 0\)
\(\Leftrightarrow\frac{x-1}{x-3}-\frac{x-3}{x-3}< 0\)
\(\Leftrightarrow\frac{x-1-x+3}{x-3}< 0\)
\(\Leftrightarrow\frac{2}{x-3}< 0\)
\(\Rightarrow x-3< 0\) vì \(2>0\)
\(\Rightarrow x< 3\)
kết hợp với \(ĐKXĐ:x\ne1;x\ne3\) ta có \(\hept{\begin{cases}x< 3\\x\ne1\end{cases}}\) thì \(A< 1\)
\(f\left(1\right)=\left(1^2-1-1\right)^{100}+\left(1^2+1-1\right)^{100}-2=\left(-1\right)^{100}+1^{100}-2=1+1-2=0\)
\(\Rightarrow f\left(x\right)⋮\left(x-1\right)\)(1)
\(f\left(-1\right)=\left[\left(-1\right)^2-\left(-1\right)-1\right]^{100}+\left[\left(-1\right)^2+\left(-1\right)-1\right]^{100}-2\)
\(=1^{100}+\left(-1\right)^{100}-2=1+1-2=0\)
\(\Rightarrow f\left(x\right)⋮\left(x+1\right)\)(2)
Mà x - 1 và x + 1 không có nhân tử chung khác 1 (3)
Từ (1), (2) và (3) \(\Rightarrow f\left(x\right)⋮\left[\left(x-1\right)\left(x+1\right)\right]\Rightarrow f\left(x\right)⋮\left(x^2-1\right)\)
\(f\left(x\right)=\left(x^2-3x+1\right)^{2015}-\left(x^2-4x+5\right)^{2016}+2\)
\(f\left(x\right)=\left(x^2-4x+4+x+3\right)^{2015}-\left(x^2-4x+4+1\right)^{2016}+2\)
\(f\left(x\right)=B\left(x-2\right)+\left(x+3\right)^{2015}-B\left(x-2\right)-1+2\)
\(f\left(x\right)=B_1\left(x-2\right)-B_2\left(x-2\right)+\left(x-2+5\right)^{2015}+1\)
\(f\left(x\right)=B_1\left(x-2\right)-B_2\left(x-2\right)+B_3\left(x-2\right)+5^{2015}+1\)
Chỉ chia hết cho x-2 khi 5^2015+1 chia hết cho x-2