Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
=>2A=\(\dfrac{2}{1.2.3}\)+\(\dfrac{2}{2.3.4}\)+...+\(\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)
=\(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\)\(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
=\(\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
=\(\dfrac{\left(n+1\right)\left(n+2\right)-2}{2\left(n+1\right)\left(n+2\right)}\)
=\(\dfrac{n^2+3n}{2\left(n^2+3n+2\right)}\)
=>A=\(\dfrac{n^2+3n}{4n^2+12n+8}\)
Lời giải:
Ta có: \(\frac{1}{k(k+1)(k+2)}=\frac{1}{2}.\frac{2}{k(k+1)(k+2)}=\frac{1}{2}.\frac{(k+2)-k}{k(k+1)(k+2)}\)
\(=\frac{1}{2}\left(\frac{k+2}{k(k+1)(k+2)}-\frac{k}{k(k+1)(k+2)}\right)=\frac{1}{2}\left(\frac{1}{k(k+1)}-\frac{1}{(k+1)(k+2)}\right)\)
Áp dụng vào bài toán:
\(\frac{1}{1.2.3}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)\)
\(\frac{1}{2.3.4}=\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)\)
\(\frac{1}{3.4.5}=\frac{1}{2}\left(\frac{1}{3.4}-\frac{1}{4.5}\right)\)
.......
\(\frac{1}{n(n+1)(n+2)}=\frac{1}{2}\left(\frac{1}{n(n+1)}-\frac{1}{(n+1)(n+2)}\right)\)
\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{n(n+1)}-\frac{1}{(n+1)(n+2)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{(n+1)(n+2)}\right)=\frac{1}{4}-\frac{1}{2(n+1)(n+2)}\)
\(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{n\cdot\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{n^2+3n+2-2}{2\left(n+1\right)\left(n+2\right)}=\dfrac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)
Bài 1 :
Để \(\dfrac{x^3+x^2-x-1}{x^3+2x-3}=0\) thì \(x^3+x^2-x-1=0\)
\(\Leftrightarrow x^2\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
Vậy,.........
\(C=\left(\dfrac{1}{\left(a^2+1\right)\left(a+1\right)^2}+\dfrac{2}{\left(a+1\right)^3}\cdot\dfrac{a+1}{a}\right):\dfrac{a-1}{a^3}\)
\(=\left(\dfrac{1}{\left(a^2+1\right)\left(a+1\right)^2}+\dfrac{2}{a\left(a+1\right)^2}\right):\dfrac{a-1}{a^3}\)
\(=\dfrac{a+2\cdot\left(a^2+1\right)}{a\left(a^2+1\right)\left(a+1\right)^2}\cdot\dfrac{a^3}{a-1}\)
\(=\dfrac{2a\left(a+1\right)}{\left(a^2+1\right)\cdot\left(a+1\right)^3}\cdot\dfrac{a^2}{a-1}\)
\(=\dfrac{2a^3}{\left(a^2+1\right)\left(a+1\right)^2\cdot\left(a-1\right)}\)
b: \(=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right]\cdot\dfrac{x}{x+1}\)
\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right)\cdot\dfrac{x}{x+1}\)
\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}\cdot\dfrac{x}{x+1}\)
\(=\dfrac{6x^2+6x}{3\left(x+1\right)}\cdot\dfrac{1}{x+1}\)
\(=\dfrac{6x\left(x+1\right)}{3\left(x+1\right)^2}=\dfrac{2x}{x+1}\)
c: \(VT=\left[\dfrac{2}{\left(x+1\right)^3}\cdot\dfrac{x+1}{x}+\dfrac{1}{\left(x+1\right)^2}\cdot\dfrac{1+x^2}{x^2}\right]\cdot\dfrac{x^3}{x-1}\)
\(=\left(\dfrac{2}{x\left(x+1\right)^2}+\dfrac{x^2+1}{x^2\cdot\left(x+1\right)^2}\right)\cdot\dfrac{x^3}{x-1}\)
\(=\dfrac{2x+x^2+1}{x^2\cdot\left(x+1\right)^2}\cdot\dfrac{x^3}{x-1}\)
\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2}\cdot\dfrac{x}{x-1}=\dfrac{x}{x-1}\)
A=1⋅2⋅3⋅...⋅2010(1+\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+...+\(\dfrac{1}{2010}\))
= 1⋅2⋅3⋅...⋅2010[(1+\(\dfrac{1}{2010}\))+(\(\dfrac{1}{2}\)+\(\dfrac{1}{2009}\))+(\(\dfrac{1}{3}\)+\(\dfrac{1}{2008}\))+...+(\(\dfrac{1}{1005}\)+\(\dfrac{1}{1006}\))]
= 1⋅2⋅3⋅...⋅2010(\(\dfrac{2011}{2010}\)+\(\dfrac{2011}{2009\cdot2}\)+\(\dfrac{2011}{2008\cdot3}\)++...+\(\dfrac{2011}{1006\cdot1005}\))
= 2011*(\(\dfrac{2010!}{2010}\)+\(\dfrac{2010!}{2009\cdot2}\)+\(\dfrac{2010!}{2008\cdot3}\)++...+\(\dfrac{2010!}{1006\cdot1005}\))
=> A⋮2011 (dpcm)
Có: \(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2010}\)\(=\dfrac{\left(\dfrac{1}{1}+\dfrac{1}{2010}\right).2010}{2}\)\(=\dfrac{2011}{2}\)
\(\Rightarrow A=1\cdot2\cdot3\cdot...\cdot2010\cdot\dfrac{2011}{2}\)
=\(1\cdot3\cdot4\cdot...\cdot2010.2011⋮2011\)