K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2016

MÌNH ĐANG CẦN GẤP!!!HELP ME!!!

19 tháng 2 2016

dễ mà mk k có t/g nên ns tắt lần sau mk giải cho, đầu tiên bạn tách hết ra, r nhóm vào thành các tam thức bậc 2 r nhóm tiếp cuối cùng thành 1 tam thức bậc 2 => A là số cf

21 tháng 4 2020

Mình bổ sung thêm điều kiện: a,b,c,d là các số nguyên

P=\(\left[\left(a^2+b^2\right)+\left(c^2+d^2\right)-2\left(ac+bd\right)\right]\left(a^2+b^2\right)-\left(ad-bc\right)^2\)

\(=\left(a^2+b^2\right)^2-2\left(a^2+b^2\right)\left(ac+bd\right)+\left(c^2+d^2\right)\left(a^2+b^2\right)-\left(ad-bc\right)^2\)

biến đổi 2 hạng tử cuối thành: (ac+bd)2, do đó:

\(P=\left[\left(a^2+b^2\right)-\left(ac+bd\right)^2\right]=\left(a^2+b^2-ac-bd\right)^2\)

=> ĐPCM

27 tháng 7 2016

Mình chỉ biết câu 2 thoi được hong?

n2+n+1

= n2+n+\(\frac{1}{4}\)+\(\frac{3}{4}\)

= (n+\(\frac{1}{2}\))2 +\(\frac{3}{4}\)

Chứng tỏ đó không phải là số chính phương

1 tháng 11 2019

Trả lời câu 1 thôi nha

Xét \(ab+cd=ab\left(c^2+d^2\right)+cd\left(a^2+b^2\right)\)Vì a^2+b^2=c^2+d^2=1

                      \(=\)\(abc^2+abd^2+a^2cd+b^2cd\)  

                      \(=ad\left(bd+ac\right)+bc\left(bd+ac\right)\)

                      \(=\left(ad+bc\right)\left(bd+ac\right)=0\left(đpcm\right)\)

a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+b^2d^2+2bacd+a^2d^2+b^2c^2-2bacd\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

b: \(\Leftrightarrow2a^2+2b^2+2c^2=2ba+2ac+2bc\)

=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

=>(a-b)^2+(b-c)^2+(a-c)^2=0

=>a=b=c

27 tháng 6 2019

Lời giải :

a) \(VP=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)

\(=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^3+b^3=VT\)( đpcm )

b) \(VT=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2=VP\)( đpcm )

a)CM \(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)

VT = \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

VP = \(\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\)

Ta thấy VP = VT

=> \(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)

b) CM \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

VT = \(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

VP = \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=ac^2+2acbd+bd^2+ad^2-2abcd+bc^2=ac^2+ad^2+bd^2+bc^2\)Ta thấy VP = VT

=> \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

8 tháng 7 2017

Ta có:

\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+2acbd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2=c^2.\left(a^2+b^2\right)+d^2.\left(a^2+b^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)=VT\)

Vậy \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)(đpcm)

Chúc bạn học tốt!!!

8 tháng 7 2017

cày sớm =))