K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NK
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NQ
0
NV
Nguyễn Việt Lâm
Giáo viên
6 tháng 4 2021
Đề bài sai, phản ví dụ: \(a=b=0,c=1\)
BĐT này chỉ đúng khi a;b;c là độ dài 3 cạnh của 1 tam giác
NM
1
NV
Nguyễn Việt Lâm
Giáo viên
12 tháng 12 2020
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)
\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Ta có:
\(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\dfrac{3a^2b^2c^2}{a^2b^2c^2}=3\)
Mình bổ sung thêm điều kiện: a,b,c,d là các số nguyên
P=\(\left[\left(a^2+b^2\right)+\left(c^2+d^2\right)-2\left(ac+bd\right)\right]\left(a^2+b^2\right)-\left(ad-bc\right)^2\)
\(=\left(a^2+b^2\right)^2-2\left(a^2+b^2\right)\left(ac+bd\right)+\left(c^2+d^2\right)\left(a^2+b^2\right)-\left(ad-bc\right)^2\)
biến đổi 2 hạng tử cuối thành: (ac+bd)2, do đó:
\(P=\left[\left(a^2+b^2\right)-\left(ac+bd\right)^2\right]=\left(a^2+b^2-ac-bd\right)^2\)
=> ĐPCM