K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2019

Đặt A=\(n^6-1=\left(n^3-1\right)\left(n^3+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2-n+1\right)\left(n^2+n+1\right)\)

Vì \(n⋮3\Rightarrow̸n=3k\pm1\)

Với n=3k+1 thì A=(3k+1-1)(3k+1+1)[(3k+1)^2-3k-1+1].[(3k+1)^2+3k+1+1]

\(=3k\left(3k+2\right)\left(9k^2+6k+1-3k-1+1\right)\left(9k^2+6k+1+3k+1+1\right)\)

\(=3k\left(3k+2\right)\left(9k^2+3k+1\right)\left(9k^2+9k+3\right)\)

\(=9k\left(3k+2\right)\left(9k^2+3k+1\right)\left(3k^2+3k+1\right)⋮9\)

Với n=3k-1 thì A=(3k-1-1)(3k-1+1)[(3k-1)^2-3k+1+1].[(3k-1)^2+3k-1+1]

\(=3k\left(3k-2\right)\left(9k^2-6k+1-3k+1+1\right)\left(9k^2-6k+1+3k-1+1\right)\)

\(=3k\left(3k-2\right)\left(9k^2-9k+3\right)\left(9k^2-3k+1\right)\)

\(=9k\left(3k-2\right)\left(3k^2-3k+1\right)\left(9k^2-3k+1\right)⋮9\)

Từ 2 trường hợp trên => đpcm

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý

15 tháng 8 2018

a) Em tham khảo tại đây nhé:

Câu hỏi của VRCT_Ran love shinichi - Toán lớp 8 - Học toán với OnlineMath

5 tháng 8 2019

a)

Ta có: 13n+1 - 13n

= 13n . 13 - 13n

= 13n (13 - 1)

= 13n . 12 \(⋮\) 12

Vậy: 13n+1 - 13n \(⋮\) 12 vs mọi số tự nhiên n

b)

Ta có: n3 - n = n (n2 - 1)

= (n - 1).n.(n+1) \(⋮\) 6 (vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 6)

5 tháng 8 2019

Cảm ơn bạn nhiều <3

n.2+n+1=n.3+1. Vì n.3 Chia hết cho 3, 1 ko chia hết cho 3 nên n.3+1 Ko chia hết cho 3 
=>n.2+n+3 ko chia hết cho 3.Ma 1 só ko chia het cho 3 thi ko chia hết cho 9 
Vậy với mọi n la só t­­­­­­­­­­u nhiên thì n.2+n+1 ko chia hết cho 9