K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

A = n^5 - 5n^3 + 4n = (n.n^4 - 5n^2 + 4)

= n.(n^4 - 4n^2 - n^2 + 4)

= n. [n^2.(n^2 - 1) - 4.(n^2 - 1)

= n.(n^2) . (n^2 - 4)

= n.(n - 1) . (n + 1) . (n + 2)

=> A chia hết cho 120

23 tháng 4 2018

Ta có \(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)

Ta có n(n-1)(n+1)(n-2)(n+2) là tích 5 số nguyên liên tiếp => nó chia hết cho 5 và chia hết cho 3

mặt khác, sẽ tồn tại 2 số chăn liên tiép, 1 số chia hết cho 2 và số còn lại chia hết cho 4 => tích chia hết cho 8 

mà 3,5,8 có ước chung lớn nhất =1 => n(n-1 )(n-2)(n+2) chia hết cho 120 (ĐPCM)

27 tháng 3 2016

1,

A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
 A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)

24 tháng 9 2020

               Bài làm :

\(a\text{)}\left(n^3-n\right)=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)=\left(n-1\right)n\left(n+1\right)\)

Vì tích ba số tự nhiên liên tiếp ⋮ 6 nên : n3 - n ⋮ 6

=> Điều phải chứng minh

\(b\text{)}n^5-m=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left[\left(n^2-4\right)+5\right]=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Vì :

  • n(n-1)(n+1)(n-2)(n+2) là tích 5 số liên tiếp nên n(n-1)(n+1)(n-2)(n+2) ⋮ 5
  • 5n(n-1)(n+1) ⋮ 5

=> (n5-n) ⋮5

=> Điều phải chứng minh

 \(\text{c)}n^5-5n^3+4n=n\left(n^4-5n^2+4\right)=n\left(n^4-n^2-4n^2+4\right)=n\text{[}n^2\left(n^2-1\right)-4\left(n^2-1\right)\text{]}=n\left(n^2-1\right)\left(n^2-4\right)=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

\(\text{Vì : }n-2;n-1;n;n+1;n+2\text{là tích của 5 số nguyên liên tiếp nên chia hết cho 3,5,8}\)

Mà 3,5,8 nguyên tố cùng nhau nên :

\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮3.5.8=120\) \(\)

=> Điều phải chứng minh

24 tháng 9 2020

a) n3 - n = n( n2 - 1 ) = n( n - 1 )( n + 1 )

Ta có n( n - 1 ) là hai số tự nhiên liên tiếp => chia hết cho 2 (1)

n( n - 1 )( n + 1 ) là ba số tự nhiên liên tiếp => chia hết cho 3 (2)

Từ (1) và (2) => n( n - 1 )( n + 1 ) chia hết cho 6 hay n3 - n chia hết cho 6 ( đpcm ) 

b) n5 - n = n( n4 - 1 ) = n( n2 - 1 )( n2 + 1 ) = n( n - 1 )( n + 1 )( n2 + 1 )

= n( n - 1 )( n + 1 )[ ( n2 - 4 ) + 5 ]

= n( n - 1 )( n + 1 )( n2 - 4 ) + 5n( n - 1 )( n + 1 )

= n( n - 1 )( n + 1 )( n - 2 )( n + 2 ) + 5n( n - 1 )( n + 1 )

n( n - 1 )( n + 1 )( n - 2 )( n + 2 ) là tích của 5 số nguyên liên tiếp => chia hết cho 5 (1)

5n( n - 1 )( n + 1 ) chia hết cho 5 (2)

Từ (1) và (2) => đpcm

c) n5 - 5n3 + 4n = n( n4 - 5n2 + 4 )

Xét n4 - 5n2 + 4 (*)

Đặt t = n2 

(*) <=> t2 - 5t + 4 = t2 - t - 4t + 4 = t( t - 1 ) - 4( t - 1 ) = ( t - 1 )( t - 4 ) = ( n2 - 1 )( n2 - 4 )

=> n( n4 - 5n2 + 4 ) = n( n2 - 1 )( n2 - 4 ) = n( n - 1 )( n + 1 )( n - 2 )( n + 2 )

n( n - 1 ) là tích của hai số nguyên liên tiếp => chia hết cho 2 (1)

n( n - 1 )( n + 1 ) là tích của 3 số nguyên liên tiếp => chia hết cho 3 (2)

n( n - 1 )( n + 1 )( n - 2 ) là tích của 4 số nguyên liên tiếp => chia hết cho 4 (3)

n( n - 1 )( n + 1 )( n - 2 )( n + 2 ) là tích của 5 số nguyên liên tiếp => chia hết cho 5 (4)

Từ (1), (2), (3) và (4) => đpcm

13 tháng 2 2020

1 bài toán con nít hình như em này mới học lớp 8 mà nhỉ anh chắc chắc 100% lớp 8 nâng cao

14 tháng 2 2020

thế a học lớp mấy

25 tháng 9 2017

Ta có:

\(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)\)

\(=n\left(n^4-n^2-4n^2+4\right)\)

\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\)

\(=n\left(n^2-1\right)\left(n^2-4\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 3 ; 5 và 8. Mà 3.5.8 = 120.

=> \(n^5-5n^3+4n⋮120\)

Vậy ...

25 tháng 9 2017

có bị sai đề không?

Ta có: \(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)\) \(=n\left(n^4-n^2-4n^2+4\right)\) \(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\) \(=n\left(n^2-1\right)\left(n^2-4\right)\) \(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) \(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) Vì \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 3 ; 5 và 8. Mà 3.5.8 = 120. => \(n^5-5n^3+4n⋮120\) Vậy ...

 A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5.
Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)

2 tháng 9 2017

a)Ta có : 

\(n^3-13n\) = \(n^3-12n-n\)\(=n\left(n^2-1\right)-12n\)\(=n.\left(n-1\right)\left(n+1\right)-6.2n\)

* n ; n-1 và n+1 là 3 số nguyên liên tiếp nên n.(n-1)(n+1) chia hết cho 6 vs 6.2n cũng chia hết cho 6

\(\Rightarrow\) n\(^3\)-13n chia hết cho 6

b)Ta có :A=n\(^5\)−5n\(^3\)+4\(n\)=n(n\(^4\)−5n\(^2\)+4)=n[n\(^2\)(n\(^2\)−1)−4(n\(^2\)−1)]=n(n\(^2\)−1)(n\(^2\)−4)=(n−2)(n−1)n(n+1)(n+2)

Vì (n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) là tích 5 số nguyên liên tiếp nên chia hết cho 5 (1)

    (n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) chứa tích của 3 số nguyên liên tiếp nên chia hết cho 3 (2)

    (n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) chứa tích của 2 số chẵn liên tiếp nên chia hết cho 8 (3)

 Mà (3;5;8) =1  (4)

Từ (1) , (2) , (3) , (4) => A⋮(3.5.8)

                                 => A⋮120

c) Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm). 

2 tháng 9 2017

Đề bài c sai r nha bn