K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2018

a) n^2.(n+1)+2n.(n+1)

= (n+1).(n^2+2n)

= n.(n+1).(n+2) chia hết cho 6 ( do 3 số liên tiếp chia hết cho 6)

b) (2n-1)^3 - (2n-1)

= (2n-1).[(2n-1)^2 - 1]

= (2n-1).(2n-1-1).(2n-1+1)

= (2n-1).2.(n-1).2n

= 4.n.(n-1).(2n-1)

mà n.(n-1) là 2 số tự nhiên liên tiếp

=> n hoặc n - 1 sẽ chia hết cho 2

=> 4.n.(n-1) sẽ chia hết cho 4.2 = 8

=> 4.n.(n-1).(2n-1) chia hết cho 8

=> (2n-1)^3 - (2n-1) chia hết cho 8

18 tháng 6 2019

\(a,\left(2x-3\right)n-2n\left(n+2\right)\)

\(=n\left(2x-3-2n-4\right)\)

\(=-7n\)

\(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM

\(b,n\left(2n-3\right)-2n\left(n+1\right)\)

\(=n\left(2n-3-2n-2\right)\)

\(=-5n⋮5\) (ĐPCM)

Rút gọn

\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)

\(=-76\)

\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)

\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)

\(=9\)

\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)

\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)

= -3

22 tháng 7 2016

ĐK : n∈Nn∈N. Gọi : A=n(n+1)(n+2)(n+3)A=n(n+1)(n+2)(n+3)

Với n = 1, ta có :

A=1.(1+1)(1+2)(1+3)=1.2.3.4=24⋮24A=1.(1+1)(1+2)(1+3)=1.2.3.4=24⋮24

Với n=k+1(k∈N∗)n=k+1(k∈N∗)

A=(k+1)(k+2)(k+3)(k+4)A=(k+1)(k+2)(k+3)(k+4)

Đây là tích của 4 số tự nhiên tự nhiên liên tiếp nên có thể khẳng định rằng :

- 1 số ⋮2⋮2

- 1 số ⋮3⋮3

- 1 số ⋮4⋮4

mà (2,3,4)=1(2,3,4)=1

⇒n(n+1)(n+2)(n+3)⋮2.3.4=24⇒n(n+1)(n+2)(n+3)⋮2.3.4=24

Vậy n(n+1)(n+2)(n+3)⋮24n(n+1)(n+2)(n+3)⋮24 với mọi n∈N

6 tháng 10 2017

Đặt : A = n4 + 2n3 - n2 -2n

Ta có : A = n4 + 2n3 - n2 -2n

A= n3.(n + 2) - n ( n + 2)

A=(n3 - n) .( n + 2)

A= n( n2 -1).( n+ 2)

A= (n - 1).n.( n +1).( n +2)

Do : (n - 1).n.( n +1).( n +2) là 4 STN liên tiếp

=> (n - 1).n.( n +1).( n +2) chia hết cho 2,3,4

Hay A= (n - 1).n.( n +1).( n +2) chia hết cho 24

17 tháng 1 2017

a, x^3 + y^3 + z^3 = (x+y)^3 - 3xy(x+y) + z^3

                            = (x+y+z)[(x+y)^2 - (x+y)z + z^2] - 3xy(x+y)

                            = -3xy(x+y)                                 (do x+y+z=0)

            Vì x+y+z=0  =>x+y=-z

=> -3xy(x+y)=3xyz

 Bài này có nhiều cách giải bạn cũng có thể dựa vào x+y+z=0 => x=-(y+z),....... rồi thay vào

   Và sau này khi giải các bài toán thì bạn có thể AD: Nếu x+y+z=0 thì x^3 +y^3+z^3=3xyz

9 tháng 10 2019

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath