Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử x là số hữu tỷ thì ta có
\(x=\frac{m}{n}\left(\left(m,n\right)=1\right)\)
\(\Rightarrow x-\frac{1}{x}=\frac{m}{n}-\frac{n}{m}=\frac{m^2-n^2}{mn}\)
Vì \(x-\frac{1}{x}\)là số nguyên nên m2 - n2 \(⋮\)m
\(\Rightarrow\)n2 \(⋮\)m
Mà n,m nguyên tố cùng nhau nên
m = \(\pm\)1
Tương tự ta cũng có
n =\(\pm\)1
\(\Rightarrow\)x = \(\pm\)1
Trái giả thuyết.
Vậy x phải là số vô tỷ.
Ta có: \(2x-\left(x-\frac{1}{x}\right)=x+\frac{1}{x}\)
\(\Rightarrow x+\frac{1}{x}\)là số vô tỷ.
Ta có: \(\left(x+\frac{1}{x}\right)^2=\left(x-\frac{1}{x}\right)^2+4\)nên là số nguyên
\(\Rightarrow\left(x+\frac{1}{x}\right)^{2n}\)là số hữu tỷ.
Mà \(x+\frac{1}{x}\)là số vô tỷ nên
\(\left(x+\frac{1}{x}\right)^{2n+1}=\left(x+\frac{1}{x}\right)\left(x+\frac{1}{x}\right)^{2n}\)
là số vô tỷ
a/ \(x=\sqrt{2}-1\)
b/ Giả sử x là số vô tỷ
\(x=\frac{m}{n}\left[\left(m,n\right)=1\right]\)
\(\Rightarrow x-\frac{1}{x}=\frac{m}{n}-\frac{n}{m}=\frac{m^2-n^2}{mn}\)
Vì \(x-\frac{1}{x}\)là số nguyên \(\Rightarrow m^2-n^2⋮m\)
\(\Rightarrow n^2⋮m\)
Mà m, n nguyên tố cùng nhau nên
\(\Rightarrow n=1;-1\)
Tương tự ta cũng có: \(m=1;-1\)
\(\Rightarrow x=1;-1\) trái giả thuyết
\(\Rightarrow x\)là số vô tỷ
Ta có:
\(2x-\left(x-\frac{1}{x}\right)=x+\frac{1}{x}\)
\(\Rightarrow x+\frac{1}{x}\)là số vô tỷ
Ta có:
\(\left(x+\frac{1}{x}\right)^2=\left(x-\frac{1}{x}\right)^2+4\) là số nguyên
\(\Rightarrow\left(x+\frac{1}{x}\right)^{2n}\) là số hữu tỉ và \(\left(x+\frac{1}{x}\right)^{2n+1}=\left(x+\frac{1}{x}\right)\left(x+\frac{1}{x}\right)^{2n}\)là số vô tỉ.
Điều kiện \(\hept{\begin{cases}x\ge0\\y\ge0\end{cases}}\)
\(1+\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}\)
\(\Leftrightarrow\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1\) (\(\sqrt{x}+\sqrt{y}-1>0\))
\(\Leftrightarrow\sqrt{x}+\sqrt{y}-\sqrt{xy}+1=0\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-1\) (\(\sqrt{xy}-1>0\))
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2=\left(\sqrt{xy}-1\right)^2\)
\(\Leftrightarrow4\sqrt{xy}=x+y-xy-1\)
Vì x, y nguyên nên \(\sqrt{xy}\) cũng phải nguyên
\(\Rightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-1\) nguyên (1)
Ta lại có:
\(x-y=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)
\(\Rightarrow\sqrt{x}-\sqrt{y}\) nguyên (2)
Lấy (1) + (2) và (1) - (2) ta có:
\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}=2\sqrt{x}\\\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}=2\sqrt{y}\end{cases}}\)
\(\Rightarrow\sqrt{x},\sqrt{y}\) là số nguyên
Vậy x, y là bình phương đúng của 1 số nguyên.
Ta có:
\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+0}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2\left(x+y+z\right)}{xyz}}\)
\(=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{zx}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)
\(=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\) là số hữu tỉ