\(m\ne5\) thì \(m=a^4+4\) không là số ngu...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2023

vì khi \(a=1\Rightarrow a^4+4a=1^5+4.1=5\) (là số nguyên tố)

\(\Rightarrow m\ne5\Rightarrow a^4+4a\ne5\Rightarrow a\left(a^3+4\right)\ne5\Rightarrow a\ne1\left(a\in Z\right)\)

mà \(\left\{{}\begin{matrix}a^4⋮n\left(a\ne1\Rightarrow n\ne1;n\in Z\right)\\4a⋮4\&a\end{matrix}\right.\)

\(\Rightarrow a^4+4a\) không là số nguyên tố

3 tháng 1 2019

a) \(m^3+3m^2-m-3\)

\(=m\left(m^2-1\right)+3\left(m^2-1\right)\)

\(=\left(m^2-1\right)\left(m+3\right)\)

\(=\left(m-1\right)\left(m+1\right)\left(m+3\right)\)

Mà n lẻ nên ta có \(m=2k+1\)

Từ đó ta có tích :

\(\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=2k\cdot2\left(k+1\right)\cdot2\cdot\left(k+2\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Dễ thấy \(k\left(k+1\right)\left(k+2\right)\)là tích của 3 số nguyên liên tiếp nên tích đó chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)⋮8\cdot6=48\left(đpcm\right)\)

4 tháng 1 2019

Biết làm câu b k chỉ cho mình với 

a) Xét hiệu a2+b2+c2+d2 -(a+b+c+d)

=a(a-10+b(b-1)+c(c-1)+d(d-1) \(⋮\)2

mà a2+b2+c2+d2 \(\ge\)0

=> a+b+c+d \(⋮\)2

hay a+b+c+d là hợp số

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/cho-abcd-la-cac-so-tu-nhien-thoa-man-doi-1-khac-nhau-va-a2d2b2c2tchung-minh-abcd-va-acbd-khong-the-dong-thoi-la-so-nguyen-to.1540844491932

7 tháng 12 2017

Ta có:\(m^4+4=m^4+4m^2+4-4m^2=\left(m^2+2\right)^2-4m^2=\left(m^2-2m+2\right)\left(m^2+2m+2\right)\)

Để \(m^4+4\) là số nguyên tố thì ta có 2 trường hợp xảy ra:

TH1:\(\hept{\begin{cases}m^2-2m+2=1\\m^2+2m+2=m^4+4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}m\left(m-2\right)=-1\\m\left(-m^3+m+2\right)=2\end{cases}}\).Từ hai pt trên ta có thể suy ra:m=1 thỏa mãn

TH2:\(\hept{\begin{cases}m^2-2m+2=m^4+4\\m^2+2m+2=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}m\left(m-2-m^3\right)=2\\m\left(m+2\right)=-1\end{cases}}\).Tương tự TH1 ta cũng có:m=-1 thỏa mãn

Thay vào \(A=m^4+m^2+1\) ta thấy x=1 và x=-1 đều thỏa mãn

Vậy x\(\in\left\{-1,1\right\}\) thỏa mãn bài toán

7 tháng 12 2017

Cho mình thêm đoạn cuối với,mình đọc thiếu đề.Bạn thêm cho mình:

  Vì \(m\in N\) nên \(m=1\) thỏa mãn

Vậy chỉ có m=1 thỏa mãn bài toán