K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

\(a^6-1=\left(a^3-1\right)\left(a^3+1\right)=\left(a-1\right)\left(a+1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)

6 tháng 8 2019

\(a^6-1=\left(a^3-1\right).\left(a^3+1\right)=\left(a-1\right).\left(a^2+a+1\right).\left(a-1\right).\left(a^2-a+1\right)\)

\(=\left(a-1\right).\left(a+1\right).\left(a^4+a^2+1\right)=\left(a-1\right).\left(a+1\right).\left(a^4-13a^2+14a^2+1\right)\)

\(=\left(a-1\right).\left(a+1\right).\left(a^2-4\right).\left(a^2-9\right)+14a^2.\left(a-1\right).\left(a+1\right)\)

đến đây dễ rồi, b tự làm tiếp :)) 

11 tháng 8 2017

Xét \(a^6-1=\left(a^3-1\right)\left(a^3+1\right)\)

Đặt  \(a=7k⊥r\)với r=1;2;3. (vì a không là bội của 7)

Ta có \(a^3=\left(7k⊥r\right)^3=343k^3⊥147k^2r+21kr^2⊥r^3\)

Xét r với lần lượt các giá trị 1;2;3.

Từ đó ta suy ra được \(a^3=7l⊥1\)

Xét từng trường hợp trên ta suy ra \(\left(a^3-1\right)\left(a^3+1\right)⋮7\)dẫn đến \(\left(a^6-1\right)⋮7\)

Vậy........

2 tháng 10 2020

Bg

C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))

=> n = 11k + 4  (với k \(\inℕ\))

=> n2 = (11k)2 + 88k + 42 

=> n2 = (11k)2 + 88k + 16  

Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5

=> n2 chia 11 dư 5

=> ĐPCM

C2: Ta có: n = 13x + 7 (với x \(\inℕ\))

=> n2 - 10 = (13x)2 + 14.13x + 72 - 10

=> n2 - 10 = (13x)2 + 14.13x + 39

Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13

=> n2 - 10 \(⋮\)13

=> ĐPCM

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý

24 tháng 9 2017

Có a6-1=(a3+1)(a3-1)

Nếu a= 7k \(\pm1\left(k\in N\right)\) thì BS7 \(\pm1\)

Nếu a = 7k \(\pm2\) thì a3=BS7 \(\pm8\)

Nếu a = 7k \(\pm3\) thì a3=BS7 \(\pm27\). Ta luôn luôn có a3+1 hoặc a3-1 chia hết cho 7.

Do đó a6 -1 chia hết cho 7

P/S: bài toán là trường hợp đặc biệt của định lí nhỏ Phéc-ma : ap-1-1 chia hết cho p với p =7

31 tháng 8 2016

mình chỉ làm đc ý thứ nhất thui

bạn cần phân tích n^2+7n+22=(n+2)(n+5)+12 
xét hiệu n+5-(n+2)=3chia hết cho 3 
=>n+5và n+2 có cùng số dư khi chia cho 3 
+xét n+5 và n+2 có cùng số dư khác 0: 
=>(n+5)(n+2) không chia hết cho 3 
12 chia hết cho 3=>(n+2)(n+5)+12 không chia hết cho 3 
+xét n+5 và n+2 cùng chia hết cho 3 
=>(n+5)(n+2) chia hết cho 9 
12 không chia hết cho 9=>(n+5)(n+2)+12 không chia hết cho 9 
phần sau làm tương tự tách n^2-5n-49=(n-9)(n+4)-13 

31 tháng 8 2016

Lớp 8 là em xin quỳ

31 tháng 12 2015

Bài này giải bằng quy nạp

Mình ko có thời gian nên nói cách làm thôi