Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a. \(\left(x-7\right)^2-x\left(x+25\right)=x^2-14x+49-x^2-25x\)
\(=-39x+49\)
b. \(\left(2x+5\right)^2-2x\left(2x-13\right)=4x^2+20x+25-4x^2+26x\)
\(=46x+25\)
c.\(\left(x+3\right)^2-\left(x+2\right)^2-3\left(x+1\right)\left(x-1\right)\)
\(=x^2+6x+9-x^2-4x-4-3x^2+3\)
\(=-3x^2+2x+8\)
Đặt \(x=\frac{a}{d},y=\frac{b}{d},z=\frac{c}{d}\) với \(a,b,c,d\in Z,D>0\) và \(\left(a,b,c,d\right)=1\)
Ta có : \(x+y^2+z^2=\frac{da+b^2+c^2}{d^2}\) theo giả thiết,suy ra \(ad+b^2+c^2\) chia hết cho \(d^2\).Chứng minh tương tự : \(db+a^2+c^2\) và \(dc+a^2+b^2\)chia hết cho \(d^2\) hay \(a^2+c^2,c^2+b^2,a^2+b^2⋮d\) . Do đó :
\(2a^2=\left(a^2+b^2\right)+\left(a^2+c^2\right)-\left(b^2+c^2\right)⋮d\)
Tương tự,ta cũng có : 2b^2;2c^2 chia hết cho d.
* TH1 : Nếu \(d\) có ước nguyên tố lẻ là p thì do \(2a^2,2b^2,2c^2⋮d\)nên a\(a,b,c⋮p\Rightarrow\left(a,b,c,d\right)>p>1\left(\text{vô lý}\right)\)=> d phải là lũy thừa của 2 (1)
* TH2 : Nếu d chia hết cho 4 thì do \(2a^2,2b^2,2c^2⋮4\Rightarrow a,b,c\) chẵn, do đó \(\left(a,b,c,d\right)\ge2>1\left(\text{vô lý}\right)\) (2)
Từ (1) và (2) ta suy ra d = 1 hoặc d = 2
* Nếu d = 1 => x = a \(\in Z\Rightarrow2x\in Z\)
* Nếu d = 2 thì x= =a/2 nên 2x = a \(\in Z\)
Hoán vị vòng quanh x,y,z ta đều được \(2x,2y,2z\in Z\) (đpcm)
Phân tích vế trái ta được
2(x2 + y2 + z2 − (xy + yz + zx))2(x2 + y2 + z2 − (xy + yz + zx))
Phân tích vế phải ta được
6(x2 + y2 + z2 − (xy + yz + zx))6(x2 + y2 + z2 − (xy + yz + zx))
Vì VT = VP nên VP - VT=0
→ 4(x2 + y2 + z2 − (xy + yz + zx)) = 0
→2(2 (x2 + y2 + z2 − (xy + yz + zx))) = 0
→2((x − y)2 + (y − z)2 + (z − x)2) = 0
→(x − y)2 + (y − z)2 + (z − x)2 = 0
→(x − y)2 = 0; (y − z)2 = 0; (z − x)2 = 0→x = y = z