K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

tìm x từ 2x-4 rồi thay vào x^2-ax+2 

đặt x^2 -ax+2 bằng 0 sau đó tìm dc a

4 tháng 7 2019

Ta có: f(1) = a.12 + b.1 + c = a + b + c

        f(-1) = a.(-1)2 + b.(-1) + c = a - b + c

=> f(1) = f(-1) => a + b + c = a - b  + c

        => a + b = a - b => a + b - a + b = 0

                           => 2b = 0 => b = 0

Khi đó, ta có: f(-x) = a.(-x)2 + b.(-x) + c = ax2 - 0 . x + c = ax2 + c

       f(x) = ax2 + bx + c = ax2 + 0.x + c = ax2 + c

=> f(-x) = f(x)

4 tháng 7 2019

Ta có: f(1) = a.12 + b.1 + c = a + b + c

          f(-1) = a.(-1)2 + b.(-1) + c = a - b + c

          f(1) = f(-1) <=> a + b + c = a - b + c <=> b = -b <=> b = 0

=> f(x) = ax2 + c luôn thỏa mãn điều kiện f(-x) = f(x) với mọi x

24 tháng 5 2021

1. Cho đa thức f (x) thỏa mãn ( x\(^2\) - 4x + 3) .f ( x + 1 ) = (x - 2).f ( x - 1 ). Chứng tỏ đa thức f (x) có ít nhất 3 nghiệm.

\(\left(x^2-4x+3\right).f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\)     

\(\text{* Thay}\)\(x=2\)\(,\)\(\text{ta có:}\)

\(\left(2^2-4.2+3\right)f\left(2+1\right)=\left(2-2\right)f\left(2-1\right)\)

\(\rightarrow\left(4-8+3\right)f\left(3\right)=0.f\left(1\right)\)

\(\rightarrow\left(-1\right).f\left(3\right)=0\)

\(\rightarrow f\left(3\right)=0\)

\(\rightarrow x=3\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=1\)\(,\)\(\text{ta có:}\)

\(\left(1^2-4.1+3\right)f\left(1+1\right)=\left(1-2\right).f\left(1-1\right)\)

\(\rightarrow\left(1-4+3\right).f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0.f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0=\left(-1\right).f\left(0\right)\)

\(\rightarrow f\left(0\right)=0\)

\(\rightarrow x=0\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=3\)\(,\)\(\text{ta có:}\)

\(\left(3^2-4.3+3\right).f\left(3+1\right)=\left(3-2\right).f\left(3-1\right)\)

\(\rightarrow\left(9-12+3\right).f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0.f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0=1.f\left(2\right)\)

\(\rightarrow f\left(2\right)=0\)

\(\rightarrow x=2\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{Vậy ...}\)

21 tháng 4 2018

Thay \(x=1\) và đa thức \(f\left(x\right)=ax^2+bx+c\) ta được : 

\(f\left(x\right)=a.1^2+b.1+c\)

\(f\left(x\right)=a+b+c\)

Mà giả thuyết cho \(a+b+c=0\) nên \(f\left(x\right)=a+b+c=0\)

Vậy \(x=1\) là một nghiệm của đa thức \(f\left(x\right)=ax^2+bx+c\)

Chúc bạn học tốt ~ 

21 tháng 4 2018

Cảm ơn nhé!

28 tháng 5 2015

\(f\left(1\right)=a.1^2+b.1+c=a+b+c=0\) 

 

Bài 1:

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}\left(-1\right)^3+a\cdot\left(-1\right)^2+b\cdot\left(-1\right)-2=0\\1^3+a\cdot1^2+b\cdot1-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=3\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)

Vậy: \(f\left(x\right)=x^3+2x^2-x-2\)

Đặt f(x)=0

\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

=>Nghiệm còn lại là x=-2